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Abstract

An experiment was carried out at the Vulcan 100TW
laser facility to investigate the potential for collisionless
shock acceleration in low-density plastic foam targets.
To assist in interpretation of the spectra obtained, ad-
vances are made in the kinetic theory approach to col-
lisionless shock theory first presented by Cairns et al in
2014. Experimental signatures consistent with acceler-
ation from a collisionless shock were detected and pa-
rameter values which fit the form of the ion spectra are
found. The parameter values found correspond to some-
what sub-optimal plasma conditions which arose due to
experimental constraints.

1 Introduction

Acceleration of ions from laser-matter interactions has
been the subject of much research, but well-understood
mechanisms such as target-normal sheath acceleration
(TNSA) produce broad, quasi-thermal ion spectra[1].
Two mechanisms for accelerating ions promise compar-
atively narrow-band ion spectra: radiation pressure ac-
celeration, which has been achieved using 10 µm CO2

laser irradiation of correspondingly lower-density gas
targets [2]; and collisionless shock acceleration (CSA),
which was first realised in similar conditions (albeit with
a significantly higher-intensity laser) by Haberberger et
al [3], and has been achieved using 1 µm pulses in gases
by Chen et al and in laser-ablated foils by Pak et al, both
at Lawrence Livermore Laboratory’s Titan laser [4, 5].
Recently, Boella et al proposed the use of ions acceler-
ated by a collisionless shock from the coronal plasma

produced during an inertial confinement fusion (ICF)
implosion to further heat the compressed fuel core to
achieve fast ignition[6].

While Pak et al used a plasma ablated from a thin
foil to produce plasma only a few times above critical
density from a solid target, another possibility is the use
of low-density solid foams, and it is this possibility which
was investigated in the present work, at Vulcan’s 100TW
Target Area West.

2 Experimental Setup

The approach taken in this experiment was to heat a CH
plastic foam target using two of the Vulcan long pulse
beams converted to the second harmonic.1

After two hundred picoseconds had passed allowing
the plasma to homogenise (necessary given the highly in-
homogeneous nature of solid foams) the resulting super-
critical plasma was struck by a fundamental frequency
pulse of 2 picosecond duration, carrying 70 joules of en-
ergy. This laser pulse set up the shock structure which
then propagated through the plasma, accelerating pro-
tons and carbon ions.

Ions travelling parallel to the drive beam axis were
captured and recorded by a Thomson spectrometer, al-
lowing protons and carbon ions to be distinguished. Ion
spectra were also recorded in the target-normal direction
(which was rotated 10 degrees from the drive beam axis),
to determine whether there was a significant difference in

1The long pulse beamlines were originally intended to be con-
verted to the third harmonic, but this proved difficult to implement
within the available time constraints.
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the features of the spectrum due to the angular offset be-
tween the two axes. From prior work on TNSA[7] it was
expected that some signal due to TNSA would be seen
in the off-normal direction, albeit with fewer ions and a
lower cut-off energy than in the target normal direction,
but collisionless shock acceleration was only expected to
produce a detectable ion signal in the drive laser normal
direction.

3 Theory

The following derivation begins with a summary of
the theoretical basis for a collisionless shock presented
by Cairns et al [8, 9]. In Section 3.1, a systematic
method for determining sets of parameters which can
self-consistently describe a collisionless shock is pre-
sented for the first time. This method is inspired by,
but significantly expands upon, the work presented by
Savin [10]. The theory presented here is non-relativistic
as this was deemed appropriate for the conditions used
in this experiment, but a relativistic treatment has been
presented by Stockem et al [11].

An electrostatic shock is characterised by an electric
potential profile which rises from zero far upstream of
the shock to a maximum value ϕmax at the shock front.
This structure moves through plasma at a given shock
speed, V , which is taken to be in the negative x direction
(i.e. a velocity of −V ). Ions whose velocity is v0 − V in
the plasma rest frame have velocity v0 in the rest frame
of the shock, implying that the initial distribution of ion
velocity in the shock frame, far upstream of the shock
(where the electrostatic potential ϕ = 0) is given by

f(v0, ϕ = 0) = n0

√
mi

2πkBTi
exp

(
−mi(v0 − V )2

2kBTi

)
, (1)

for an upstream ion population of mass mi, temperature
Ti and uniform density n0

From simple energy-conservation arguments, an ion of
charge state Z must have initial velocity greater than
vmin =

√
2Zeϕ/mi to reach a potential ϕ. Having prop-

agated up the shock to a potential ϕ < ϕmax, ions now
have velocity v =

√
v20 − v2min. The steady-state form

of the ion continuity equation leads to the condition
∂
∂ϕv(v0, ϕ)ni(v0, ϕ) = 0. Therefore the ion density at po-
tential ϕ, including ions with initial velocity of at most
vmax is given by:

ñi(s, umax) (2)

= b

∫ umax

√
s

u√
u2 − s

exp
(
−βi (u− U)

2
)
du

In this equation the variables have been normalised
for typographic brevity: number densities according
to ñi = ni/n0, potentials according to s = ϕ/ϕmax,

and velocities according to u2 = miv
2/(2Zeϕmax), and

b = (βi/π)
1/2 has been introduced for the sake of brevity.

The ion temperature is represented as the normalised in-
verse temperature βi = Zeϕmax/(kBTi). An advantage
of this normalisation of quantities is that it eliminates
the maximum shock potential as an independent vari-
able. This formulation differs from previous treatments
which eliminate ion temperature and express integrals
over the residual, not the initial velocity [8–10].

Electrons are parametrised by the electron tempera-
ture, which is normalised similarly to the ion tempera-
ture: βe = eϕmax/(kBTe). The temperature ratio em-
phasised by other treatments of this problem [8–10] is
therefore given by T = βi/βe, and are distributed ac-
cording to a Boltzmann relation:

ñe(s, umax) = Zni(0, umax) exp(sβe) (3)

= Zb exp(sβe)

∫ umax

0

exp
(
−βi (u− U)

2
)
du

At a given ϕ, two components contribute to the par-
ticle distributions: one component represents inflowing
ions, for which umax = ∞; the other contains ions which
have reflected from the shock and are travelling back
upstream, whose umax = 1 such that all ions in this
component have insufficient energy to pass through the
shock. Therefore the total charge density at potential ϕ
(normalised to Zen0) is:

ρ(s) = (ñi(s,∞) + ñi(s, 1))

− 1

Z
(ñe(s,∞) + ñe(s, 1)) . (4)

The Sagdeev potential Φ (normalised to ϕmax) is de-
fined by

∂2s

∂x2
= −∂Φ

∂s
, (5)

an equation identical in form to that of a particle mov-
ing under the influence of a potential Φ, whose ‘time’
variable is x and whose ‘space’ variable is s. Here x is
normalised to vϕ/Ωi, where v2ϕ = Zeϕmax/mi and Ωi is
the standard ion plasma frequency.

Converted to an integral equation and employing the
electrostatic Poisson equation with appropriate normal-
isation, the Sagdeev potential takes the form

Φ(s) =

∫ s

0

ρ(s′) ds′ . (6)

By comparison with Eq. 4, the Sagdeev potential is
therefore a combination of four terms, each of which
is a double integral. By considering that the ‘pseudo-
particle’ moving according to Eq. 5 starts at s = 0,
and that by inspection of Eq. 6 the Sagdeev potential
Φ(0) = 0, we can deduce that the highest value of s that
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the system evolving according to Eq. 5 will reach—by
definition ϕmax/ϕmax = 1—also fulfils Φ(s) = 0. There-
fore the condition Φ(1) = 0 closes the system and ensures
self-consistent dynamics.

A necessary condition to ensure that the Sagdeev po-
tential takes the form of a potential well, so that the
pseudo-particle is able to reach s = 1, is

∂Φ

∂s

∣∣∣∣
s=1

> 0. (7)

It remains to find sets of parameters (U, βi, βe) for
which Φ(s = 1) = 0.

3.1 The Valid Parameter Space

Firstly we observe that in Eq. 3, ñe is trivially integrable
with respect to s:

Ne =

∫ 1

0

ñe(s, umax)/Z ds (8)

=
exp(βe)− 1

βe
ñi(0, umax).

Integrating out the s-dependence in Eq. 2 is somewhat
more involved, but the integrals involved are not diffi-
cult. By splitting the domain of the velocity integral at
u = 1, inverting the order of integration to integrate first
over s and then comparing the resulting integrand in the
two regions of the velocity integral, it can be shown that
the result is

Ni =

∫ 1

0

ñi(s, umax) ds (9)

= b

∫ umax

0

2u
(
u−ℜ

√
u2 − 1

)
(10)

exp
(
−βi (u− U)

2
)
du

At this point it is informative to re-normalise velocities
relative to the maximum velocity of reflected particles.
Introducing u = v0/

√
2ϕmax and U = V/

√
2ϕmax and

also replacing the electron-ion temperature ratio T with
β = ϕmax/T ,

Ni = b

∫ umax

0

2u
(
u−ℜ

√
u2 − 1

)
(11)

exp
(
−βi (u− U)

2
)
du

= FU,βi(umax) (12)

Ne =
eβe − 1

βe
b

∫ umax

0

(13)

exp
(
−βi (u− U)

2
)
du

=
eβe − 1

βe
GU,βi

(umax) (14)
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Figure 1: The relationship between βe and A, the ratio of
integrals defined in Eq. 16. It is clear that the constraints
βe > 0 and A ≤ 2 correspond to A ≥ 1 and βe / 1.25.

Now, the Sagdeev self-consistency condition is given
by

0 = (Ni(∞) +Ni(1)) (15)
− (Ne(∞) +Ne(1)).

Rearranging to isolate βe on one side of the equation,

eβe − 1

βe
=

FU,βi
(∞) + FU,βi

(1)

GU,βi(∞) +GU,βi(1)
= A (16)

This equation can be solved for βe for given values of
U and βi to determine the electron temperature. Due
to the simplified nature of the integrals involved, only
FU,βi(∞) is not soluble analytically2, and even that in-
tegral is sufficiently ‘nice’ to be evaluated numerically to
relatively high accuracy3.

Note that the condition A > 1 ensures that βe ≥
0. The largest value A may be expected to take is
roughly two—the maximum value of 2u(u2−

√
u2 − 1)—

corresponding to a maximum βe = 1.25643. The func-
tion eβe−1

βe
, shown in Figure 1 has no inverse in terms of

elementary functions, though a closed-form inverse ex-
ists and depends on the product logarithm special func-
tion. Given the small range of values taken by A, an
interpolation approach to inverting A(β) could also give
acceptable accuracy.

3.2 The Cold-Ion Limit

We now examine the behaviour of the system for βi ≫ 1,
corresponding to an ion temperature much smaller than
the shock potential. For sufficiently large values of βi,
Equations 12 and 14 become

2FU,βi
(1) may be evaluated by noting that ℜ

√
u2 − 1 = 0 where

0 ≤ u ≤ 1.
3This integral takes the form of a convolution with a Gaussian

kernel, a fact which could have potential for numerical evaluation,
though this potential is not investigated here.
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Figure 2: Values of the integral ratio A for a range of
values of the independent variables U and βi. Behaviour
converges to a constant function A(U) for large βi in
agreement with Eq. 19. The space is divided into two
regions by an overlaid white line corresponding to the
locus ∂Φ

∂s (s = 1) = 0. Above the line the condition of
Eq. 7 is fulfilled, below it the gradient is negative and
no shock forms. This condition restricts the valid phase-
space to U ≥ 1

F (umax) =

{
2U

(
U −ℜ

√
U2 − 1

)
U < umax

0 U > umax

(17)

G(umax) =

{
1 U < umax

0 U > umax

(18)

This gives a value for A in closed form:

eβe − 1

βe
= A = 2U

(
U −ℜ

√
U2 − 1

)
(19)

For positive βe, A must be larger than unity. This
restricts the parameter space to U2 > 1

2 . The minimum
value of U2 is further restricted by considering the condi-
tion of Eq. 7. Careful analysis shows that for ϕmax ≫ 1,
this condition reduces to U ≥ 1. For finite βi this con-
dition has been numerically evaluated and the result is
shown in Figure 2 as a line separating the region of space
where this condition is fulfilled from that in which it is
not. For all values of βi, Eq. 7 is only fulfilled for U ' 1.
As u = 1 corresponds to the velocity required for an ion
to pass the shock, this condition implies that only ions
already moving towards the shock in the plasma rest
frame can be reflected and therefore at most half of the
plasma ions may be reflected by the shock.

As seen in Figure 2, or by inspecting Eq. 19, the max-
imum value attained by A is two, at U = 1. For A = 2,
βe ≈ 1.25643. From these constraints we derive the fol-
lowing constraints on the parameter space in which CSA
is possible, in physical units

Zeϕmax <
1

2
miV

2 (20)

eϕmax < 1.25643kBTe (21)

The maximum of eϕmax/kBTe is attained at Zeϕmax =
1
2miV

2.
The admissible phase-space of the system is shown in

Figure 3, in both β − M space and for the purposes of
comparison to previous work such as Savin [10] also in
T −M space, for which the space is not bounded as it is
in β −M space.

3.3 Ion Spectra

With the ability to find valid regions of U−βi−T phase-
space, it is now desirable to find the energy spectrum of
ions accelerated by a shock with these parameters. Di-
viding ions into three populations based on their initial
velocity in the shock frame, it is possible to evaluate the
velocities they are accelerated to, and therefore their en-
ergies in the lab frame. Ions with initial velocity u < 0,
i.e. those travelling downstream of the shock, are not
affected by the potential of the shock and so their veloc-
ity is unchanged by the shock. Ions with initial velocity
0 < u < 1 reflect from the shock, and their final ve-
locity is negated in the shock frame. Those with initial
velocity u > 1 pass through the shock without being re-
flected – their velocity is reduced to

√
u2 − 1 in the shock

frame. Transforming these velocities into the lab frame,
and negating the sign of velocities such that reflected
ions have positive velocity:

ulab =


uE − urf 0 > urf + U

uE + 2U + urf 0 < urf + U < 1

uE + U −
√
(urf + U)2 − 1 1 < urf + U

(22)
for ions with initial velocity urf in the plasma rest frame,
which is itself moving with the expansion velocity uE

relative to the lab frame.
Transforming these into normalised energies, E =

u2
lab:

fE(E) =


fu(uback(E)) ∂

∂Euback U2
E < E

fu(uslow(E)) ∂
∂Euslow U2

E < E < (1 + UE)
2

fu(ufast(E)) ∂
∂Eufast 0 < E < U2

E

(23)
where the lab-frame shock speed UE = U + uE has been
introduced

Here values of fE(E) in regions where two of the three
conditions overlap are calculated by adding together val-
ues for the applicable regions, fu(u) ∝ exp

(
−βiu

2
)

and
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Figure 3: The valid phase space of the collisionless shock system, (left) represented by lines of constant βi in βe−M
space and (right) in T −M space. The space is fully bounded in βe and M , but unbounded in T and ϕmax = βi.
In the left pane, large values of βi tend to the lower limiting line and small values of βi tend toward the βe = 0
limit at the left.

the functions:

uback(E) = uE −
√
E (24)

uslow(E) =
√
E − uE − 2U (25)

ufast(E) =

√
(uE + U −

√
E)2 + 1− U (26)

give the initial plasma-frame velocity in terms of the
lab-frame energy. Figure 4 presents an example spec-
trum for parameters U = 1.01, βi = 1000. The high-
energy cut-offs for these two populations are in the ratio
(U + 1)2/U2, so it is in principle possible to determine
the normalised shock-speed U from the form of an ion
spectrum alone. In practice however, as seen in Section 4
and in particular Figure 5, these lowest-energy ions may
be lost due to the working range of ion spectrometers
not reaching down to zero energy, or obscured by ions
accelerated by other mechanisms such as TNSA.

4 Results

Ion spectra collected from the drive beam using a Thom-
son spectrometer on two different shots are shown in
Figure 5. Thermal (i.e. with N ≈ exp(−E/kT ) depen-
dence) proton populations are clearly visible, with sim-
ilar temperature shared by the protons captured along
each shot. The energy dependence of these beams is con-
sistent with target-normal sheath acceleration. TNSA
appears to be suppressed at energies above approx-
imately 1.25MeV4. A narrower peak ranging from
1.5MeV to 1.75MeV is compared to the spectrum pre-
dicted by the model of Section 3.3 with dimensionless
parameters βi = 10, U = 1.45 and ion temperature
kBTi = 28 keV. No such narrow peak was ever observed
in the target-normal direction.

4Ions with energy below about 0.75MeV are lost from the de-
tector, explaining the sharp low-energy cut-off

0 1 2 3 4 5

E / Ze
max

0

1

2

3

4

d
N

/d
E

 (
a
rb

.)

"Dragged" ions

"Reflected" ions

Figure 4: Ion spectrum predicted by the model of Sec-
tion 3.3 for parameter values U = 1.01, βi = 1000. Note
the population of approximately thermal ions with cut-
off energy approximately equal to the shock potential
energy which have been “dragged” by the shock, and
the narrow, sharp population of ions reflected from the
shock with energy approximately four times the shock
potential. Note the energy axis is normalised according
to the physical ion potential energy Zeϕmax = βikBTi.
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Figure 5: Top: A reading from a Thomson parabola
spectrometer featuring the characteristic isolated region
of proton flux (circled in red) attributed to collisionless
shock acceleration. Bottom: (blue) proton spectrum ex-
tracted from the above image plate data and (yellow)
another representative shot displaying a CSA-like peak.
Red: The prediction of Section 3.3 for dimensionless pa-
rameter values of βi = 10, U = 1.45. We do not attempt
to fit to the regions of exponential energy dependence
with E < 1.25MeV as these protons are assumed to be
accelerated by a TNSA-like mechanism, not CSA. The
dashed black line demonstrates the effect of finite pinhole
size on the apparent energy distribution.

The analysis of Section 3 predicts electron-ion temper-
ature ratio T = 27 and therefore Mach number M = 1.24
for the parameters noted above. In physical units ϕmax =
284 kV, kBTe = 769 keV, V = 3.6% of c = 10 µmps−1.
While the overall width of the spectra are comparable,
the prediction is much more strongly peaked, with a
sharp maximum energy cut-off. The loss of this sharp
definition in the experimental spectrum may be due to
the use of a large pinhole, the shape of which is colvolved
with the true spectrum and therefore broadens sharp fea-
tures. The effect of such a convolution is also shown in
Figure 5.

4.1 Uncertainty in Derived Parameters

The three parameters mentioned above—the normalised
inverse ion temperature βi, normalised shock speed U
and physical ion temperature kBTi—are sufficient to
fully determine the behaviour of the collisionless shock
system, including the physical electron temperature via
its dimensionless inverse βe, and the Mach number M
used to characterise the shock speed. While values of
these three parameters have been found in the above
paragraphs which reproduce the form of the spectrum
found in the experiment, it is important to qualify this
by examining how much the parameters can vary and
produce similarly-shaped spectra. In the following anal-
ysis the peak of the reflected spectrum is normalised to
a constant value. This is because absolutely calibrated
comparison of the number of ions accelerated to theoret-
ical predictions would require very detailed accounting
of the ion density and size of the target, the angular
spread of the beam and the pinhole at the entrance to
the spectrometer, as well as an absolutely calibrated de-
tector. The former is beyond the scope of this report,
and no absolute calibration of the image plates used to
collect spectra was carried out during the experiment.

The maximum energy cut-off of the reflected ion spec-
trum is easy to determine both theoretically and by in-
spection of the spectra: following Section 3.3, the maxi-
mum energy in physical units is Emax = (1+U)2βikBTi.
Once the maximum energy has been read off an ion spec-
trum, this forms a constraint between the three key pa-
rameters – if a shock speed parameter U and ion temper-
ature kBTi are chosen the normalised potential may be
calculated easily. As a simple heuristic to link the two
remaining parameters, the half-maximum point of the
reflected spectrum is chosen to remain fixed. By differ-
entiating the functional form of the reflected spectrum
given in Section 3.3 with respect to kBTi and setting the
result to zero (evaluated at the half-maximum energy of
the spectrum), a condition linking U and kBTi is found.
Figure 6 shows an ensemble of normalised spectra gen-
erated by varying U between 1.2 and 55 and using these

5Here the lower limit is enforced by the condition of Equation 7
and the upper limit determined by considering the maximum en-
ergy of non-reflected ions.
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two constraints to calculate the corresponding values of
the other parameters. Note that the ensemble shown
in Figure 6 is only a one-dimensional traversal through
parameter space – a more rigorous uncertainty analysis
may be able to expand this to a two-dimensional region
of the phase space all corresponding to similar spectral
traces, but this is left for future work. Even without this
more detailed analysis further expanding the parameter
space which produces equivalent spectra it is clear that
there is much uncertainty present in the determination
of experimental parameters from the ion spectrum alone.
This is exacerbated by the failure of an x-ray spectrom-
eter deployed on the experiment to produce usable data,
preventing assessment of the electron temperature of the
plasma.

Numerical radiation-hydrodynamic simulations were
carried out to try to determine the initial conditions of
the plasma prior to short-pulse irradiation, but these
simulations did not produce results consistent with even
the broad range of parameters which produce the ob-
served ion spectra. However, variables such as tempera-
ture are expected to depend strongly on the equation of
state of the foam target. Equations of state of foams are
poorly-understood and will not necessarily agree with
the equations of state for homogeneous materials, which
were simply used at much lower than solid density to
facilitate these simulations. This discrepancy between
the physical and assumed equation of state may explain
the difficulty in modelling the targets for this particular
experiment.

5 Conclusion

An experiment investigating the acceleration of proton
beams by collisionless shocks has been carried out at
the Vulcan 100TW laser facility, using novel low-density
solid foam targets to achieve the marginally over-critical
plasma density required to produce the electrostatic
shock structure. A population of quasi-monoenergetic
protons was detected parallel to the drive beam axis, as
well as a population matching the exponential energy de-
pendence expected of target-normal sheath acceleration.
The quasi-monoenergetic proton population detected in
the drive beam direction is consistent with acceleration
by a collisionless shock. The maximum energy cut-off
and the breadth of this spectral signature are consis-
tent with a large range of ion and electron temperature,
shock speed and shock potential values, albeit within a
constrained region of the full three-dimensional param-
eter space, shown in Figures 6 and8. The maximum en-
ergy of ions accelerated is somewhat reduced compared
to the prediction of Savin [10] for the Vulcan system.
This prediction is shown in Figure 8 along with predic-
tions for other systems. This may be understood by con-
sidering a number of factors by which the present exper-
iment deviated from the idealised situation considered
therein. Principal among them was the use of second-

harmonic irradiation to pre-form a plasma rather than
third-harmonic, as originally proposed. The correspond-
ingly enhanced opacity of the foam target to the heat-
ing beams—exacerbated by use of targets with higher-
than-optimal density—prevented uniform heating of the
target, and this non-uniformity was detrimental to the
formation of a uniform, laminar shock.

Numerical modelling of the interaction was limited by
the unavailability of necessary equation of state data for
CH plastic initially in foam form, and resolving uncer-
tainties in the key model parameters was therefore not
possible using simulation results. Future experiments
could provide more constrained estimates of the param-
eter values by making independent electron temperature
measurements, and by measuring the electron density of
the plasma, which may require development of a fourth-
harmonic probe beam due to the high densities present.
These measurements would provide a better understand-
ing of collisionless shock formation within the plasma
and enable optimisation of conditions to access the pa-
rameters range envisioned by Savin [10] at the Vulcan fa-
cility. Alternatively, facilities such as Orion or OMEGA,
which regularly operate long pulses at third-harmonic
and possess electron temperature and density diagnos-
tics capable of probing denser plasma[12, 13], may be an
appropriate setting for experiments of this type.
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Figure 6: a) One of the spectra shown in Figure 5, overlaid with an ensemble of spectra calculated using the
model of Section 3.3. The parameter U is varied between 1.2 and 5; ion temperature and normalised potential are
adjusted to keep the peak energy and full width at half-maximum constant according to Section 4.1 and shown in
plot b). The key parameters of the system may be varied by an order of magnitude while the form of the spectrum
produced remains virtually unchanged.

Facility M T ϕ̃max

UCLA 1.38 483 415
Vulcan 1.43 754 732
Orion 1.44 821 821

TITAN 1.41 824 762
LMJ-PETAL 1.42 964 905

Figure 7: The predictions made by Savin [10] for several
different facilities. In that work, T is the electron-ion
temperature ratio βi/βe and ϕ̃max the normalised shock
potential which is equivalent to βi. These sets of param-
eters, along with the parameter range compatible with
the results of this experiment, are shown in Figure 8
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