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Abstract

The DiPOLE concept is a world-leading, high average power laser technology based on diode-pumped, cryogenically cooled Yb:YAG amplifiers [1] combining multi-J pulses with multi-Hz repetition rates and high efficiency.
* High energy, high repetition rate lasers are required for applications in industry, science and medicine including laser shock peening [2], inertial confinement fusion [3] and high-resolution, time-resolved imaging [4].
* For successful operation of such lasers, high-quality components that fully comply with our specifications are required.
e To ensure optical components comply, we have devised a range of setups for optical characterisation which are detailed below.
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