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Introduction 

It is relatively common for diagnostics and optics on high-

power laser experiments to need to be mounted onto the outside 

of the target chamber at an angle. This is generally achieved by 

manufacturing a custom angled flange to hold the device at the 

correct angle. This is extremely wasteful, however, as these 

flanges are usually large, difficult to store, and only usable by a 

particular diagnostic at a specific angle (preventing them from 

being reused). It is therefore desirable to design a reusable angle 

flange, compatible with typical port dimensions, that is capable 

of continuous angular adjustment. 

 

Design Principle 

The solution method chosen is to construct a two-part, “double 

rotating” flange, with each part featuring two circular faces at 

an angle 𝛼 to one another. We shall refer to these parts as 

‘wedges’. As an indicative model, each wedge can be modelled 

as a sector of a torus, with solid radius 𝑟 and radius of 

revolution 𝑅 (see Figure 1). By stacking two of these wedges on 

top of one another, we can intuitively form a combined flange 

with a combined angle of 2𝛼, or a combined angle of 0 if the 

two flanges are reversed (see Figure 2). Since these two wedges 

share a common circular face, rotating one flange relative to the 

other enables us to obtain a ‘combined angle’ anywhere 

between these two extremes. Thus, this principle allows for 

continuous angular adjustment of the flange. 

 

 

Figure 1: Indicative model of a ‘wedge’ as a torus sector 

a)  

b)  

Figure 2: Two wedges stacked so as to produce combined 

angles of 2𝛼 (a) and 0 (b). 

 

 

Figure 3: Obtaining an arbitrary overall angle, between the 

two extremes, by rotating the two wedges relative to one 

another. 
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Angular Mathematics 

It is useful to be able to mathematically deduce the overall 

angle that will be formed, 𝛾, as a result of rotating one wedge 

by a specified angle, 𝛽, relative to the other. This can help 

inform how to set up the double-angle flange to achieve a 

particular diagnostic angle. To do this, we first need to 

mathematically define the planes of the two faces of each 

wedge. 

Planes are defined in terms of a point, 𝑷, on a plane, and a unit 

vector 𝒏 perpendicular to that plane. If we define one face of 

our wedge as lying on the xz plane centred on the origin, its 

plane definition is trivial: 

𝑷𝟎 = [
𝟎
𝟎
𝟎
] 

𝒏𝟎 = [
𝟎
𝟏
𝟎
] 

We can define the other face of the wedge fairly simply by 

considering the point 𝑷𝟏 on this plane to be directly above the 

origin, as shown in Figure 4. 

 

Figure 4: Defining the top and bottom planes of a wedge 

By simple trigonometry, we can show that: 

𝑷𝟏 = [
0

𝑅 tan𝛼
0

] 

𝒏𝟏 = [
− sin 𝛼
cos 𝛼
0

] 

Let us now imagine adding our second wedge, such that the two 

share the xz plane as a common face, but with the second 

wedge offset from the first by some angle 𝛽, as per Figure 5. 

 

 

Figure 5: The addition of a second wedge, sharing the xz plane 

We can think of the second wedge as having been flipped in the 

xz plane relative to the first one, and then rotated around the 

origin. It thus follows that its other face can be defined in terms 

of a point, 𝑷𝟐, that is simply a reflection of 𝑷𝟏 in the xz plane, 

and a vector 𝒏𝟐 that is a reflection of 𝒏𝟏 multiplied by a 

rotation vector of angle 𝛽 about the y axis. In mathematical 

terms: 

𝑷𝟐 = [
0

−𝑅 tan𝛼
0

] 

𝒏𝟐 = 𝑹𝒚𝑩 × [
− sin 𝛼
−cos 𝛼

0
] 

𝒏𝟐 = [
cos𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos𝛽
] [−

− sin 𝛼
cos 𝛼
0

] = [
− sin 𝛼 cos𝛽

−cos 𝛼
sin 𝛼 sin 𝛽

] 

In order to find the overall angle between the top and bottom 

planes of the double-wedge, we first need to define the plane in 

which this overall angle will lie (in other words, the angle at 

which we cannot see any curvature on the top and bottom faces 

of the double wedge). We shall refer to this as the ‘viewing 

plane’, defined by the normal vector 𝒏𝟑. This viewing plane 

will be the plane mutually perpendicular to the top and bottom 

planes. This plane’s normal vector can be found by taking the 

cross product of the normal vectors for the top and bottom 

planes: 

𝒏𝟑 = 𝒏𝟏 × 𝒏𝟐 = [
−sin 𝛼
cos𝛼
0

] × [
− sin 𝛼 cos 𝛽

− cos𝛼
sin 𝛼 sin 𝛽

] 

𝒏𝟑 = [

cos 𝛼 sin 𝛼 sin 𝛽

sin2 𝛼 sin 𝛽
cos 𝛼 sin 𝛼 (1 + cos𝛽)

] 

Simplifying: 



𝒏𝟑 = [

sin 𝛽
tan 𝛼 sin 𝛽
1 + cos𝛽

] 

The next step is to define a pair of vectors lying in this plane 

which we can measure an angle between. To keep the 

mathematics relatively simple, it is easiest to have one of these 

vectors (𝒗𝟏) lying along the top face, and one (𝒗𝟐) lying along 

the xz plane, where the two wedges meet. The overall angle, 𝛾, 

of the combined flange will be equal to twice the angle between 

these two vectors, as shown in Figure 6. 

 

Figure 6: The combined double-wedge from the direction of the 

viewing plane, with vectors and angles annotated. 

We can find the formula for 𝒗𝟏 by taking the cross product of 

the normal vectors of the two planes that are intersecting, the 

viewing plane and the top face: 

𝒗𝟏 = 𝒏𝟏 × 𝒏𝟑 

𝒗𝟏 = [
− sin 𝛼
cos𝛼
0

] × [

sin 𝛽
tan 𝛼 sin 𝛽
cos𝛽 + 1

] 

𝒗𝟏 = [

cos 𝛼 (cos𝛽 + 1)
sin 𝛼 (cos 𝛽 + 1)

− tan𝛼 sin 𝛽 sin 𝛼 − cos𝛼 sin 𝛽
] 

𝒗𝟏 = [

cos𝛽 + 1
tan𝛼 (cos 𝛽 + 1)

− sin 𝛽 (1 + tan2 𝛼)

] 

We can work out 𝒗𝟐 similarly, with the intersecting planes in 

this case being the viewing plane and the xz plane: 

𝒗𝟐 = [
𝟎
𝟏
𝟎
] × 𝒏𝟑 

𝒗𝟐 = [
𝟎
𝟏
𝟎
] × [

sin 𝛽
tan 𝛼 sin 𝛽
cos𝛽 + 1

] = [
cos 𝛽 + 1

0
− sin 𝛽

] 

Finally, we can measure the angle between these two vectors 

using the following formula: 

cos
𝛾

2
=

𝒗𝟏 ∙ 𝒗𝟐
|𝒗𝟏||𝒗𝟐|

 

cos
𝛾

2

=
(cos 𝛽 + 1)2 + 0 + sin2 𝛽 (1 + tan2 𝛼)

√[(1 + tan2 𝛼)(cos 𝛽 + 1)2 + sin2 𝛽 (1 + tan2 𝛼)2][(cos 𝛽 + 1)2 + sin2 𝛽]
 

This ultimately rearranges to: 

cos
𝛾

2
= √

(cos𝛽 + 1)2

sin2 𝛽
+ (1 + tan2 𝛼)

(1 + tan2 𝛼) [
(cos 𝛽 + 1)2

sin2 𝛽
+ 1]

 

Or: 

𝛾 = 2 cos−1√
(𝑝 + 𝑞)

𝑝(𝑞 + 1)
 

Where: 

𝑝 = (1 + tan2 𝛼) 

𝑞 =
(cos𝛽 + 1)2

sin2 𝛽
= cot

𝛽

2
 

Alternatively we can express this in terms of the rotation angle 

𝛽 required to give an overall angle 𝛾: 

𝛽 = 2 cot−1√
𝑝 − 𝑝 cos2

𝛾
2

(𝑝 cos2
𝛾
2
− 1)

 

The crucial thing to note is that this equation (and its derivation) 

is independent of either 𝑟 or 𝑅, or indeed any function of the 

actual wedge geometry. This means that, so long as the angle of 

each wedge remains the same, they can be any shape that we 

desire. Note also that although the combined flange angle is 

independent of the orientation of the flange about its mounting 

point, this flange mounting angle will determine the pointing of 

the flange, and so the flange must be able to rotate in this axis 

too for it to be usable. 

 

The Design 

The first flange designed according to this double rotating 

principle was a low-profile design, capable of mounting an 

ISO100 tube fitting and diagnostics up to 100mm in diameter at 

angles of up to 30 degrees from the normal. It mounts directly 

to a 250mm diameter Gemini port. The two wedges are held 

together, and to the door, using a clamp ring, allowing the 

flanges to rotate relative to one another and relative to the port 

they mounted onto when the ring is loosened. The equation 

relating rotating angle to overall flange angle is used to define a 

scale etched around one of the wedges, showing how the two 

flanges should be oriented to achieve a particular overall angle. 

This flange was first used to mount an angled kapton window 

for the Gemini TA3 Higginbotham experiment in February 

2020. 

Figure 7: The low-profile double-rotating flange. 

This flange was, however, too small to accommodate the streak 

camera required for the Gemini TA3 Kettle experiment. It is 

also difficult to machine to a good quality. Therefore, a second 

double-angle flange has also been designed, referred to as the 

‘armadillo’ flange. The wedges of this flange are larger, but are 

each capable of being machined (with the help of a jig) in just 

two turning operations. They are also held together using clamp 

rings. It can also accommodate diagnostics up to 150mm 

diameter and at up to 35 degrees from the normal, at the 

expense of being significantly bulkier & heavier than the low-

profile design. For this reason, it also incorporates crane lifting 

points into each wedge.  



 

 

Figure 8: CAD model of the ‘armadillo’ profile double-rotating 

flange, with streak camera mounted into it. 

Conclusions 

Though these flanges have yet to see widespread service, they 

should enable the accurate and adjustable positioning of a wide 

range of diagnostics used on the CLF high-power laser facilities 

while minimizing the need to use costly and wasteful custom 

angled flanges. 
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