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Introduction 

Super-resolution single-molecule localization microscopy 

(SMLM), including stochastic optical reconstruction microscopy 

(STORM)[1], photoactivated localization microscopy 

(PALM)[2], and points accumulation for imaging in nanoscale 

topography (PAINT)[3], exploits the fluorescent on/off 

properties of suitable organic dyes and fluorescent proteins to 

detect single molecules at different time points. In the cases 

where high-density fluorescent emitters are present in SMLM, 

common localization algorithms may fail to precisely localize 

single molecules, and thereby generate significant artefacts. 

Alternatively, fluorescence fluctuations super-resolution 

microscopy (FF-SRM) is a good candidate to address this issue 

by exploiting the random, independent, and uncorrelated nature 

of fluorescence intensity fluctuations over time. FF-SRM 

includes, for example, super-resolution optical fluctuation 

imaging (SOFI), Bayesian analysis of blinking and bleaching 

(3B), multiple signal classification (MUSIC), and super-

resolution radial fluctuations (SRRF) microscopy. Among the 

FF-SRM techniques, SRRF microscopy is a popular technique 

but is prone to artefacts, resulting in low fidelity, especially under 

conditions of high-density fluorophores. In this paper, we 

developed a novel super-resolution microscopy method, namely 

VeSRRF, that demonstrated superior performance in SRRF 

microscopy. 

Method 

SRRF processes raw fluorescence fluctuations images in both 

spatial and temporal domains. In the spatial domain, the average 

distance to lines of gradient around a point is measured (Fig. 1b) 

[4], representing the degree of convergence of the gradient. The 

mean convergence from the point (xc, yc) to the gradient line 

through the point (xi’, yi’) for the N ring coordinates is calculated 

to give the radiality of the pixel (x, y) in frame t, 
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where sgn denotes the sign function, G is the gradient, and r is 

the radius of the ring. Higher convergence indicates the presence 

of a fluorophore. In the temporal domain, the sequence of the 

convergence is analyzed through high-order temporal statistics, 

e.g., temporal radiality pairwise product mean (TRPPM), to 

generate a super-resolution image. TRPPM is expressed as 
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where T is the total number of frames, s and t enumerate the 

frames, and Rs and Rt are the convergences at the pixel (x, y) in 

frame s and t, respectively.  

An enhanced version of SRRF, namely enhanced-SRRF 

(eSRRF), incorporates three key modifications to the original 

algorithm to improve image fidelity. Firstly, Fourier transform 

interpolation is deployed to generate subpixels, minimizing 

macro-pixel artefacts. Secondly, the calculation of mean 

convergence now employs radial gradient convergence (RGC) 

with a weighted factor map based on the user-defined radius R, 

i.e., the point spread function (PSF) size, and the intensity 

gradient of each pixel in the raw images. The RGC in the pixel 

(i0, j0) is 
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where ∆= 2𝜎 + 1, σ is the standard deviation of PSF, d is the 

distance to the pixel of interest, and 𝑑 = √(𝑖 − 𝑖0)
2 + (𝑗 − 𝑗0)

2. 

Furthermore, a new parameter called sensitivity has been 

introduced to optimize the PSF sharpening power applied by the 

RGC. Lastly, the image artefact detection and quantification 

tool SQUIRREL is integrated to provide automated data-driven 

optimal parameter identification for image reconstruction, 

minimizing image artefacts and non-linearity.  

In a different approach, the intensity and gradient variance 

reweighted radial fluctuations (VRRF) were independently 

developed  to improve the imaging resolution and fidelity 

obtained by SRRF. As the temporal variance of intensity and 

gradient of a fluorophore contains its location estimation, VRRF 

quantitatively establishes the model of intensity and gradient 

fluctuations as the function of fluorophores’ locations. If the 

image of a sample is composed of the detections of N 

fluorophores, the intensity distribution at the location r over time 

t is 
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where U(r) is the PSF, ai is the maximum brightness of the 

fluorophores, and fi(t) is the fluctuations coefficient ranging 

between 0 and 1. The intensity variance is expressed as 
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where D[X] denotes the variance of time series X. And the 

gradient variance is expressed as 
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where σ is the standard deviation of the Gaussian function. 

Therefore, the intensity variance increases, but the gradient 

variance reduces when r approaches the center of a fluorophore 

(Fig. 1c). To build up the relationship between the two variances 

and the position of a fluorophore, the intensity weighting 

function is defined as 

                                               𝑊(𝑟) =
𝐷[𝐼(𝑟)]

𝐷[𝐺(𝑟)]
 （7） 

From this equation, larger W(r) values indicate a higher 

possibility for the centers of fluorophores. The reweighted image 

sequence  W(r)U(r, t) can then be processed using  SRRF, leading 
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to super-resolution images with higher resolution and fewer 

artefacts. 

In this study, we introduce the VeSRRF algorithm for FF-SRM 

(Fig.1). The method begins by utilizing the VRRF statistical 

variance analysis to perform an initial analysis on the 

fluorescence fluctuations image sequences. Thus, the 

overlapping fluorescent molecules are separated, and the 

artefacts caused by the high-density fluorophores can be reduced. 

Subsequently, the processed image sequences are further 

analyzed in the eSRRF algorithm. By integrating variance 

analysis of VRRF and eSRRF reconstruction, the VeSRRF 

algorithm can generate reconstructed images with optimal 

resolution and fidelity as the final outputs, outperforming other 

algorithms such as SRRF, VRRF/SRRF (referred to as VRRF for 

simplicity hereinafter), and eSRRF. 

 

Fig. 1. Super-resolution radial fluctuations microscopy image 

reconstruction algorithm schematic. (a) Raw image sequence and 

wide-field image of microtubules. (b) SRRF reconstruction steps. 

(c) VRRF reconstruction steps. The reconstruction is then 

completed using the SRRF algorithm. (d) eSRRF reconstruction 

steps. The VeSRRF algorithm first processes the image sequence 

through VRRF, and then completes the image reconstruction 

using the eSRRF algorithm. 

Results 

Fluorescence fluctuations image series obtained under a variety 

of signal-to-noise ratio (SNR) conditions were also tested in 

SRRF, eSRRF, VRRF, and VeSRRF. As an example, dataset of 

Tubulin-AF488 in fixed COS7 cells was acquired using a 

Mercury lamp illuminator in a ZEISS microscope. In Fig. 2, from 

the enlarged region of interest, it was observed that the 

reconstructed image from VRRF showed some broken 

microtubule structures due to the nonlinear artefacts (Fig. 2d), 

which was also confirmed by the lower error mapping values 

from resolution scaling Pearson correlation coefficient (RSP) 

analysis (Fig. 2l). Next, eSRRF gave a higher RSP value but 

lower resolution, as depicted in Fig. 2g and 2k. In contrast, the 

reconstructed image from VeSRRF achieved the highest 

resolution and good fidelity, as shown in Fig. 2i and 2m. Finally, 

the quantitative QnR assessment confirmed that VeSRRF 

achieved optimal performance considering both resolution and 

fidelity, resulting in the highest QnR value. The experiment and 

tests showed that VeSRRF effectively super-resolved the cellular 

microtubule networks from fluorescence fluctuations imaging 

while minimizing the artefacts under conditions of high-density 

fluorophores.  

 

Fig. 2. Comparison of the reconstructed images of Tubulin- 

AF488 in fixed COS7 cells. (a) Wide-field images. (b-e) 

Reconstructed images from the SRRF, eSRRF, VRRF, and 

VeSRRF algorithms. (f-i) Corresponding FRC maps. (j-m) 

Corresponding error maps. Scale bar in the enlarged image of the 

region indicated by the yellow border box: 2 µm. 

Conclusions 

In this paper, we developed a novel combinatory computational 

super-resolution microscopy method, namely VeSRRF, that 

demonstrated superior performance in STORM and SRRF 

microscopy. We performed super-resolution image 

reconstructions of the simulated and experimental datasets of 

cellular microtubule networks under sparse and dense 

fluorophore conditions, and quantitatively evaluated and 

compared the super-resolution image quality in SRRF, eSRRF, 

VRRF, and VeSRRF using the FRC, RSP, and QnR metrics. Our 

results demonstrated that VeSRRF, the integrated VRRF and 

eSRRF algorithms, not only achieved the highest resolution but 

also produced high fidelity in the reconstructed images, 

outperforming other algorithms in our tests. VeSRRF conveys 

super-resolution, high-fidelity biological imaging using standard, 

inexpensive optical microscopes, common fluorophores, and 

simple sample preparations, making it widely applicable to any 

life science laboratory. VeSRRF is an exemplary method in 

which complementary microscopy techniques are integrated 

holistically, creating superior imaging performance and 

capabilities. We anticipate that VeSRRF will emerge as a 

valuable tool for many researchers to simplify their quest to solve 

numerous complex biological problems. 
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