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Abstract

In this contribution we report on our use of the D scan
technique to optimise a grating compressor in the Front-
End of the Vulcan Laser Facility. We present theoreti-
cal and experimental results and demonstrate that this
technique is ideal to tune both the incidence angle of the
grating and the distance between the gratings. Opti-
mal compression is achieved by eliminating any residual
second and third order dispersion, resulting in a shorter
compressed pulse.

Introduction

Diffraction gratings are a commonly used method of com-
pressing light which has initially been chirped in time,
and are used in variety of experiments, ranging from as-
trophysics [1], solid state physics [2], quantum physics
[3], material processing [4] and two photon effects [5].
These gratings compress such pulses of light by intro-
ducing an additional phase to the spectrum of the laser,
stretching the pulse in the frequency domain, thus com-
pressing the pulse in the time domain. The overall phase
of the pulse is therefore required to determine the rele-
vant parameters of the grating compressor to optimally
compress the pulse. Dispersion scans, first established by
Miranda et al [6], are a method which allows us to mea-
sure such phases. These scans, commonly known as D
scans, involve measuring the spectrum of the second har-
monic of the pulse for various separations of the gratings,
and creating a plot of both the wavelength and distance.
Throughout this report, we demonstrate how one can
measure and use a D scan to characterize a pulse, but
mainly we determine both theoretically and experimen-
tally the required grating parameters (angle and distance
between the gratings) to optimally compress the pulse,
achieving the shortest pulse possible for a giving chirped
pulse.

1 Experimental Set Up

1.1 Vulcan Petawatt laser

In order to demonstrate our experiment we used the
seed of the Vulcan laser system. The Vulcan Petawatt

is a 400J, 400 fs Nd:Glass chain laser [7, 8], which can
produce laser pulses with intensities up to the order of
∼ 1021Wcm−2.

The initial pulse, or ’seed’ pulse starts in a hard aper-
ture commercial mode-locked Ti:sapphire laser [9, 10] in
the Front End (FE) of Vulcan. It is then divided in two,
90% of it gets amplified in a Nd:YLF regenerative am-
plifier up to a mJ, while the second part is stretched to 3
ps [11]. The output of the regenerative amplifier (RGA)
in the front end is used as an OPCPA pump for the
stretched seed, and amplifies the seed using nonlinear
methods. Outside the pump duration any background
noise of the seed will not be amplified, significantly in-
creasing the contrast of the output pulse [12, 13]. The
pulse is then stretched from 3 ps to 4.5 ns in a long Offner
stretcher [14]. It is further amplified in a nanosecond
OPCPA configuration [15]. This consists of superimpos-
ing the seed with a temporary shaped nanosecond pulse
[16]. This significantly reduces gain narrowing and pro-
vides a method of shaping the pulse spectrum [16, 17].
This stretched pulse is further amplified through a series
of disc and rod chains. The amplified pulse is then com-
pressed to short pulse durations, creating a high power
pulse on the Petawatt level.

Our focus is on the seed because this is where the ma-
jority of the amplification occurs, six orders of magnitude
compared to five in the amplification chain. It is this
part of the system that plays the most important role in
determining the final characteristics of the system, con-
trast, pulse duration/spectrum, B integral among other
effects [11, 18]. In order to analyse the seed, we have
inserted a test compressor, which compresses the pulse
in parallel to the main Petawatt beam line without in-
troducing significant changes to the Vulcan FE [19]. In
particular, the output beam of the nanosecond OPCPA
system is now split equally between Vulcan and the new
test compressor. As a result, it has been possible to con-
tinuously monitor and characterize the Petawatt seed.

1.2 Test Compressor Set Up

The test compressor configuration which is in the FE of
Vulcan is shown in Fig. 1 and is used throughout this re-
port to obtain our experimental results. To optimise the
test compressor, we measure the spectral intensity of the
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Figure 1: Schematic of the compressor table showing the
input beam hitting mirror M1, passing through aper-
tures A1 and A2 onto the compressor gratings (G1 and
G2). A periscope (P1), wave-plate (WP), polariser cube
(PC), second harmonic generation crystal (SHGC) were
placed before the spectrometer. Changing the position
of motorised mirror MM changes the dispersion of the
pulse by changing the path length. The pulse then trav-
els throughout the set up again, hitting M4 and then is
then measured using a spectrometer.

second harmonic (SH), a pulse with double the frequency
of the initial laser. A second harmonic generation (SHG)
crystal and spectrometer were placed at the output of the
compressor. After optimising the SHG from the crystal
with an IR λ = 1055.5nm beam, the position of the
motorised mirror (MM on Fig.1) stage was changed in
small steps whereupon the SH spectrum was recorded
for each position. Due to the double pass setup of the
compressor, a change in motor position corresponds to
quadrupling of the path length through the system al-
lowing a large range of path lengths to be scanned. The
compressor was originally designed to have maximum
compression with grating distance L = 13 m and grating
angle γ = 48.7o, resembling the final compressor. We try
to replicate the same optical characteristics for this com-
pressor, which has 48.7° incidence angle and 3.25 m in
between the gratings in a four pass configuration. This
is then folded in three, as seen in 1. The minimum pulse
duration is obtained by changing the distance and the
angle between the gratings to give optimal compression.
We then did five scans at different angles in order to
evaluate the pulse duration of the optimally compressed
pulse.

2 Theory

2.1 Relationship between Spectral phase and D scans

The spectrum (Fig.2) has a bandwidth of 10nm and has
a smooth spectral phase, which can be observed from
the lack of complex features on the D scan.

Figure 2: Fundamental spectrum of laser pulse after
compression.

Because of this, we will use the classical Taylor ex-
pansion about the central frequency of the pulse [20].
Hence the spectral phase can be written as:

φ(ω) = φ0 +φ1(ω−ω0)+
1

2
φ2(ω−ω0)2 +

1

6
φ3(ω−ω0)3...

(1)
where ω is the angular frequency, ω0 is the central

frequency and φn refers to the derivative order of the
phase with respect to ω. Each term introduces different
effects to the pulse. The first term can be interpreted as a
phase shift of the entire pulse to a reference similar to the
pulse envelope whereas the second term is simply a shift
in the central frequency. Hence, we will be particularly
interested in the second and third order terms which
physically represent the group delay dispersion (GDD)
and the third order dispersion (TOD). GDD enlarges the
pulse symmetrically and determines the pulse duration
while TOD creates pre- or post-pulses depending on the
signal of its term.

The main source of dispersion is given by gratings,
both in the two stretchers and the compressor. These
gratings represent a geometrical dispersion given by:

φ(ω,L) =
ω

c

L

cos (γ)
cos (γ − α(ω)) (2)

where c is the speed of light, L is the distance between
the dispersive elements, γ is the angle of incidence of the
light as it strikes the grating and α is the angle of the
outgoing wave which is frequency dependent.

The D scan signal, which is the intensity of the second
harmonic can then be represented by:

D(ω,L) =|
√
S(ω) exp iφ(ω)W (ω) |2 (3)

where S(ω) is the signal from the spectrometer as a func-
tion of frequency, and W (ω) is a weight function that is
dependent on the spectral acceptance of the second har-
monic measured. Due to the small bandwidth (10nm)
and the thickness of the crystal (< 0.1mm). We con-
sider this to be constant in this report. By plotting this
signal against both wavelength and a distance given by
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the alteration to the beam path length we obtain a dis-
persion scan. Making use of the above, a trial D scan can
be created using only the spectrum of the fundamental
beam.

We then study the effect of both the GDD and the
TOD of a given pulse on the D scan trace itself. To do
this, we take the fundamental spectrum of the pulse we
measured, and input several values of GDD to the phase
as represented in Eq. 1 (all the other coefficients to be
zero). These results can be viewed in Fig. 3. From this,
we can see that the GDD shifts the displacement of the
pulse in the vertical direction.

(a) GDD = 5× 106fs2

(b) GDD = −5× 106fs2

Figure 3: Two Examples of a D scan where the phase
only contains GDD

Repeating this for the third order derivative or TOD,
one can see that the slope of the maximum values on the
D scan change, as seen in Fig 4. Between the highest
and the lowest order in Fig. 4 there is a slight slope
change, this is due to the residual TOD of the scanned
dispersion.

(a) φ3 = −2.3× 1011fs4

(b) φ3 = 3× 1014fs5

Figure 4: Two Examples of a D scan where the phase
only contains TOD

Higher order derivatives affect the curvature of the
maximum values. This can be seen in Figure 5, where
the fourth order derivative is scanned through a range
of values, creating a quadratic function for the D scan
maximum. Similarly, the fifth order derivative is scanned
through a range of values creating a cubic function for
the maximum of the D scan.

(a) φ4 = −2.3× 108fs3

(b) φ5 = 3× 108fs3

Figure 5: Reconstruction of D scan for higher order
derivatives of the phase
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In conclusion, the addition of a certain Taylor spec-
tral phase of order n, will create a feature in the D scan
which is a polynomial of order n − 2. From this, GDD
will be a constant, TOD a linear curve, fourth order dis-
persion (FOD), a parabola and so on.

2.2 Algorithm Implementation

Using the fundamental spectrum of the pulse as a trial
spectrum, one can introduce a phase, and measure the
corresponding D scan. GDD was initially introduced
with all other terms in 6 equating to zero. The position
of the spectrum was then measured for various different
D scans and a calibration curve is plotted in Figure 6.
This was then repeated for TOD and another calibration
curve was plotted of the TOD as a function of the slope
of the D scan, as seen in Figure 7

Figure 6: Calibration Curve for the GDD and position,

Figure 7: Calibration Curve for the TOD and slope

The above relationships can be given by the following
formulae:

GDD = (−5.6× 104)Position + (3.6× 10−11) (4)

TOD = (−2.0× 105)Slope− (1.3× 10−7) (5)

Using these relationship, one can determine the phase
from the position and shape of the experimental data.
After obtaining these coefficients (i.e. GDD0 and TOD0),
the initial values can be determined and a relationship
between the TOD and GDD of the pulse can be cre-
ated to determine the phase for an optimally compressed
pulse, as described below.

2.3 Determining the Required Parameters of the Gratings
for Optimal Compression

We define the function f(γ,D) to be a function which
describes the added phase due to the gratings, given in
Eq.2. We will also define D = D0 + z, in which D is
the absolute distance between gratings, D0 the nominal
distance between gratings (in which the pulse is com-
pressed) and z the difference between the two. Please
note that f(γ,D) = f(γ,D0) + f(γ, z).

This relation gives two degrees of freedom to control
the spectral phase. These are the angle of incidence γ
and the distance between the two gratings D. These
two freedoms contribute to an overall phase allowing the
pulse duration to be controlled.

When passing through a pair of gratings the overall
phase of the pulse can be described as follows:

Φ = Φ0 + f(γ,D) (6)

where Φ0 is the initial phase of the pulse and f(γ,D)
is the additional phase produced by the pair of gratings.
We then define φ0 to be the phase of the pulse for max-
imum compression, as given by: φ0 = Φ0 + f(γ,D0),
which is the actual phase at the output of the compres-
sor. In order to minimise all the phase terms, we require
the overall phase to be constant, or the group delay to be
zero. If GDD and TOD introduced by the gratings are
the second and third order derivatives of the function f ,
from [21] they can then be viewed as;

fn(γ, ω,D) = Cn(γ, ω)D (7)

for n = 2, 3..., where:

C2(γ, ω) =
−4π2c

w3d2 cos3(α)
(8a)

C3(γ, ω) =
12π2c

ω4d2 cos3(α)
(1 +

2πcsin(α)

ωd cos2(α)
) (8b)

With this we can expand these two terms (f2 and f3)
to the first order on both D and γ to evaluate what small
changes could do to the additional phase. These small
changes are denoted by ∆f and are given by:

∆fn = Cn(γ, ω)z + C ′n(γ, ω)D∆γ, n = 2 and 3 (9)

In which C ′n(γ, ω) is the derivative in relation to γ.
These derivatives were found to be

C ′2 = −12π2c sinα cos γ

w3d2 cos5(α)
(10a)

C ′3 =
12π2c cos γ

ω4d2 cos5(α)
(3 sinα+

2πc

ωd
{ 5

cos2 α
− 4}) (10b)
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In every D-scan trace we will be changing the dis-
tance between the gratings while keeping the angle con-
stant, we can say that the TOD and the GDD of the
pulse itself that are the second and third derivatives of
φ0 as given above can be given by:

GDD = GDD0 + C2(γ, ω0).z (11a)

TOD = TOD0 + C3(γ, ω0).z (11b)

In which GDD0 and TOD0 are initial conditions that
have not been compressed. Please note that we could
establish a linear relation between the variation of TOD
and GDD, which can be translated in:

TOD =
C3

C2
.GDD + (TOD0 −

C3

C2
GDD0) (12)

The above equations are only valid for a given D scan,
where the angle of the gratings is kept constant. To
minimize TOD when GDD is equals zero we will have
change both the angle and the distance. The variation
of the phase introduced by the compressor that is given
in Eq.9 has to be ∆f3 = −TOD0 while GDD stays the
same ∆f2 = 0. In this case the change in angle is given
by Eq.13.

∆γ =
−TOD0.C2(γ, ω0)

D.(C2(γ, ω0)C ′3(γ, ω0)− C3(γ, ω0)C ′2(γ, ω0))
(13)

The distance between the grating would have to change
as well by:

z = − D

C2(γ, ω0)
C ′2(γ, ω0)∆γ (14)

From here, it is obvious that to compress the pulse, one
must change both the angle and the distance between
the gratings. We can combine this and the calibration
obtained in Eqn 4 to determine how much we need to
move the gratings to get the TOD to zero.

Results

Five D scans were carried out for various angles between
the gratings, ranging from 48 degrees to 49.7 degrees.
These D scans can be seen below in Fig. 10 in the Ap-
pendix.

Analysis and discussion

In order to obtain the GDD and TOD of the pulse mea-
sured for each D scan, we used the calibration given in
Fig.6 and Fig.7.

Here the position of the trace is dependant on the
GDD, while the slope, represented by the green line in
each figure is dependant on the TOD. In order to de-
termine the curvature of the compressed pulse in the

Figure 8: Theoretical results of the linear relation be-
tween GDD and TOD over the 25mm of scan. Values
calculated for the measurement done with an incident
angle of 48.7 degrees.

Figure 9: Experimental results of TOD (blue) and slope 
(red) of the D-scan trace as a function of the angle.

experimental data, higher order terms of the Taylor Ex-
pansion would need to be calculated. However, as we 
are just interested in tuning the compressor and hence 
the GDD and TOD here, only the phase up to the third 
order of the Taylor Expansion is needed.

The measured D scan can be seen on the left of each 
figure, and its reconstruction on the right of each figure, 
up to the third order of its phase (TOD). By determining 
the position and slope of the maximum intensities in each 
D scan, one can use these calibration curves to determine 
the GDD, TOD and phase of the angle.

For the angle of 48.7 degrees we calculated the theo-
retical TOD/GDD relation, as it is giving in Eq.12. This 
relationship can be seen in Fig.8

Fitting a linear relationship between the angle γ and 
TOD using equation 12, one obtains a slope of 1.53 × 
108 fs3/deg for a nominal angle of incidence of 48.7 de-
grees. This was repeated for an incident angle of 49 
degrees and the slope of this relation was found to be 
1.44 × 108 fs3/deg, using Eqn 13.

From our experimental data, one also obtains a rela-
tionship between TOD and angle, with a slope of 1.46 × 
108 fs3/deg with an uncertainty of 2.0 × 10−7 fs3/deg.

Comparing both the theoretical and experimental slopes 
of this linear fit, one can see they are in agreement with
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one another. From this we can confirm our theoretical
analysis of the relationship between D scans and phase.
We can therefore use equation 13 and equation 14 to
calculate the parameters required to optimally compress
the pulse for a given grating pair.

Conclusions

We can conclude that D scan is an easy to use method
of phase reconstruction that is appropriate to tune the
characteristics of a compressor to minimize the pulse du-
ration and maximise the output intensity of the laser at
Vulcan. While doing so, we have presented an analyti-
cal expression to do it and confirmed it experimentally.
Using these parameters for the grating compressors at
Vulcan, we can thus compress the pulse to its shortest
pulse duration.
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[12] A. Dubietis, G. Jonušauskas, and A. Piskarskas,
“Powerful femtosecond pulse generation by chirped
and stretched pulse parametric amplification in bbo
crystal,” Optics Communications, vol. 88, no. 4,
pp. 437–440, 1992.

[13] I. Ross, P. Matousek, M. Towrie, A. Langley, and
J. Collier, “The prospects for ultrashort pulse du-
ration and ultrahigh intensity using optical para-
metric chirped pulse amplifiers,” Optics Communi-
cations, vol. 144, no. 1, pp. 125–133, 1997.

[14] G. Cheriaux, P. Rousseau, F. Salin, J. P. Cham-
baret, B. Walker, and L. F. Dimauro, “Aberration-
free stretcher design for ultrashort-pulse amplifica-
tion,” Opt. Lett., vol. 21, pp. 414–416, Mar 1996.

[15] C. Hernandez-Gomez, P.A. Brummitt, D.J. Canny,
R.J. Clarke, J. Collier, C.N. Danson, A.M. Dunne,
B. Fell, A.J. Frackiewicz, S. Hancock, S. Hawkes,
R. Heathcote, P. Holligan, M.H.R. Hutchinson, A.
Kidd, W.J. Lester, I.O. Musgrave, D. Neely, D.R.

6



Neville, P.A. Norreys, D.A. Pepler, C.J. Reason, W.
Shaikh, T.B. Winstone, and B.E. Wyborn, “Vulcan
petawatt-operation and development,” J. Phys. IV
France, vol. 133, pp. 555–559, 2006.

[16] P. Oliveira, S. Addis, J. Gay, K. Ertel, M. Galim-
berti, and I. Musgrave, “Control of temporal shape
of nanosecond long lasers using feedback loops,”
Opt. Express, vol. 27, pp. 6607–6617, Mar 2019.

[17] F. Batysta, R. Antipenkov, T. Borger, A. Kissinger,
J. T. Green, R. Kananavičius, G. Chériaux,
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(a) Incident Angle 48.0 degrees (b) Incident Angle 48.7 degrees

(c) Incident Angle 48.7 degrees (d) Incident Angle 49.2 degrees

(e) Incident Angle 49.7 degrees

Figure 10: Examples of Dispersion Scans, each with different incident angles (on the left), and their reconstructions
up using a reconstruction of the phase up to third order (on the right).
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