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Introduction 

Understanding the function of biological molecules at the level 
of movements of atoms or the making/breaking of chemical 
bonds offers considerable potential for downstream benefits. 
These range from advanced drug design strategies to the 
production of synthetic, biology-inspired molecules for 
technological or medical applications. The concept of the 
structure-function relationship is well-established in biology but 
this does not offer a complete picture of the intimate ‘chemical’ 
processes occurring in the active sites of biological molecules 
because it neglects the role of solvent-induced and thermal 
fluctuations of the protein architecture as well as the effect of 
local vibrational modes. Indeed, the influence of fast protein 
structural dynamics on biological processes that take place 
many orders of magnitude more slowly is one of the key 
questions yet to be conclusively addressed.1  

The subtle way that biomolecule structure influences function is 
evidenced very clearly by the haemoprotein family. This group 
of proteins are responsible for a large number of biological roles 
ranging from reversible ligand binding to enzymatic activity 
but, to a first approximation, some of the major structural 
features located near the haem centre appear to be very similar, 
raising the question of exactly how the molecular architecture 
influences function. An example of this can be seen in studies 
showing that mutations at just four positions or fewer can 
engender nitric oxide reductase or peroxidase activity upon the 
ligand binding protein myoglobin. This flexibility of function 
within a relatively restricted structure has led to the 
haemoproteins becoming attractive templates for synthetic 
systems but for this to be successful, we must first fully 
understand the detailed roles of each of the main structural 
elements.2-5 

Ultrafast 2D-IR spectroscopy has shown great potential for 
measuring the structural dynamics of biological molecules both 
at the global, whole molecule level and in terms of a single 
bond within the macromolecular structure by employing 
vibrational probes.6-8 The purpose of this report is to summarise 
recent advances of 2D-IR spectroscopy of haem proteins using 
the ULTRA laser system and to demonstrate how this 
technology can influence our view of the structure-function 
relationship. This will be done by reference to studies of two 
haem proteins: the ligand transport protein myoglobin 9 and the 
catalase enzyme.10  

The catalases, common to almost all aerobically-respiring 
organisms, are responsible for the disproportionation of 
hydrogen peroxide in a reaction that is often represented as: 11-13 

catalase-Fe(III) + H2O2  → O=Fe(IV)Por+.  + H2O          (1) 

O=Fe(IV)Por+. + H2O2   → catalase-Fe(III) + H2O + O2     (2) 

           2H2O2                        →          2H2O + O2                (1)+(2) 

where O=Fe(IV)Por+. is referred to as Compound 1 (CpdI). This 
mechanism is widely accepted but the precise roles of catalase 

structural elements in the individual steps remain the topic of 
debate14,15 and enquiry. In particular, the distal side of the haem 
pocket includes a histidine residue located in close proximity to 
the haem centre.16-18 This residue is widely implicated in the 
catalase mechanism and mutation studies have shown that its 
presence is crucial to CpdI formation.19-21 

Interestingly, a similarly-located and conserved distal histidine 
residue is found in myoglobin. The fact that this residue is 
apparently central to the functioning of two different proteins 
begs questions about its role. For example, it seems reasonable 
that it could be responsible for ligand binding in both cases. 
This then suggests that it is the rest of the haem pocket that 
controls specific functionality. Other residues in the active sites 
of these proteins do differ and so must contribute to the 
behaviour of the biomolecule. Most notably, the proximal 
residues that coordinate with the Fe atom of the haem moiety 
are different and this change could play a role in the chemical 
lability of the haem ligand.22 However, it is also instructive to 
ask whether the presence of the distal histidine in both 
myoglobin and catalase means that the haem ligand is subject to 
a similar chemical environment in both cases and it is this 
question that we address here. 

In each of the articles featured, the ferric form of the protein 
was considered with nitric oxide bound to the haem centre 
acting as a probe of the local dynamic environment.9,10 The 
choice of NO arose because it binds effectively to the haem site 
of Mb while the catalase enzyme is inhibited by NO binding, 
meaning that it provided a stable and effective probe in both 
cases. In addition, NO itself plays a fundamental role in 
biology, participating in processes such as signalling and 
immune responses,23-25 while higher concentrations can lead to 
the deleterious effects associated with nitrosative stress. The 
NO radical is also highly reactive with transition metals and 
metalloproteins, such as those containing haem groups and 
well-known examples include components of the respiratory 
chain such as cytochrome C oxidase and key enzymes of the 
tricarboxylic acid cycle such as fumarase and aconitase.26,27  

Experimental 

For all 2D-IR experiments, catalase and myoglobin were 
contained in a pD7 deuterated phosphate buffer solution with 
care taken to ensure complete H/D exchange in all cases. 
MAHMA NONOate was used to nitrosylate the ferric 
proteins.10  For all 2D-IR experiments, the samples were held 
between two CaF2 windows separated by a 100 µm thickness 
spacer.  

The method for obtaining IR pump-probe and 2D-IR spectra 
has been described previously; briefly, 2D-IR spectra were 
acquired using the FT-2D-IR method described in Ref 10 using a 
sequence of three mid-infrared (IR) laser pulses arranged in a 
pseudo pump-probe beam geometry.28,29 The pulses were 
generated by the ULTRA Ti:sapphire laser system pumping a 
white-light seeded optical parametric amplifier (OPA) equipped  
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