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Introduction 

The underlying mechanism of protein function involves time 
dependent changes in structure occurring on multiple time 
scales, from subpicosecond to seconds. Understanding the full 
range of protein dynamics will critical to the interpretation, 
analysis and ultimately manipulation of protein function. 
Consequently, the real time measurement and analysis of 
protein dynamics is a major objective of modern biophysics. In 
many cases, protein activity is modulated through interaction 
with external stimuli such as allosteric effectors that bind to 
regions of the protein remote from the effector site and result in 
long range structural changes. Such triggers are normally small 
organic molecules. However, photons of light that trigger 
photoreceptor activation may be considered analogous to 
allosteric modulators. The application of pulsed lasers to such 
photoactive proteins thus provides a natural starting time, from 
which real time structural dynamics can be measured. 

In this article we report on our recent investigations of one such 
family of proteins, the BLUF (blue light using FAD) domain 
proteins. We will focus on the photoactive flavoprotein AppA 
(activation of photopigment and PUC A protein), which is a 
blue light photoreceptor from Rhodobacter sphaeroides that 
regulates photosystem biosynthesis in response to both light and 
oxygen levels. The protein comprises two domains: an N-
terminal BLUF domain, which binds the flavin adenine 
dinucleotide (FAD) chromophore (Figure 1), and a C-terminal 
domain that is the binding site for the transcription factor, PpsR. 
In low light, low oxygen environments AppA binds two 
molecules of PpsR, but under blue light illumination, it 
undergoes a conformational change resulting in the release of 
the transcription factor, which then binds to DNA, inhibiting 
photosystem biosynthesis. The BLUF domain is of particular 
interest since it is a modular unit found in a number of blue 
light sensing proteins where it controls functions as diverse as 
phototaxis, the photophobic response and gene expression. 
Recently, it was proposed that the modular nature of the BLUF 

domain lends itself to applications in the emerging field of 
optogenetics. 

  

 

Figure 1 A Structure of AppA BLUF domain showing binding of 
FAD. The H-bonding network is illustrated in more detail in B. 
In C a potential change in the H-bonding structure as a result 
of electronic excitation is shown. 

 

In this report we will describe our recent studies of the AppA 
BLUF domain (AppABLUF) utilising both the ultrasensitive 
transient infrared (TRIR) measurements afforded by the 
ULTRA system and the sensitive measurement of transient IR 
on timescales from 100 fs to 1 ms, which exploited the 
capabilities of the recently commissioned TRMPS 
spectrometer.[1,2]  The former method is used to probe the 
primary mechanism of BLUF domain photochemistry. 
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Real Time Study of Functional Dynamics 

The BLUF domain is an anti-repressor, which binds the 
repressor PpsR in the dark. Its function requires the release of 
PpsR following light absorption.  Since PpsR is bound at the C 
terminal, well removed from the N terminal flavin binding 
domain this is a nice example of allostery. Because the process 
can be initiated by light absorption the TRMPS method affords 
us the opportunity to observe this in real time.[2] 

The TRIR and TRMPS data for AppABLUF are shown in figure 
3A and B. Figure 3A shows the first 10 ns of the relaxation, and 
it is evident that ground state recovery dominates. However, 
after 10 ns a small fraction (ca. 10%) of the ground state has not 
recovered. The high sensitivity and very wide time range of 
TRMPS allows us to follow the evolution of this minor 
population.  Most significantly the sigmoidal lineshape around 
1622/1631 cm-1 continues to evolve on the 1-5 s time scale. In 
figure 3C the measurements are repeated for fully 13C 
exchanged AppABLUF. The flavin peaks are unshifted while the 
peaks evolving on the microsecond time scale undergo a shift 
typical of 12C/13C exchange, confirming their assignment to 
protein modes. Finally in 3D the TRMPS spectrum recorded 
after evolution is complete is compared with the steady state IR 
difference measurement. The similarity between the two sets of 
data established the timescale for the light induced structural 
change as a few microseconds. Detailed studies of the kinetics 
at each mode were made and revealed a range of time scales for 
structural dynamics. Interestingly the kinetic relaxation 
associated with the 1700 band system, unambiguously assigned 
to the chromophore ground state carbonyl, was slower than the 
main protein modes, suggesting the speed of response to 
photoexcitation is not determined solely by distance from the 
absorber.[2] 

 

Figure 3. A. 0 – 10 ns dynamics of AppABLUF. B TRMPS data on 
the evolution between 10 ns and 50 s after excitation of the 
flavin. Note the continuing evolution of the 1622/1631cm-1 pair. 
C. The effect of U13C substitution. D. Comparison of 20 s and 
steady state FTIR difference spectra. 

To investigate further the pathway for the propagation of the 
structure change we measured TRMPS for the W104A mutant 
of AppABLUF.[2] This mutant has been shown to be 
photoactive in the sense that the characteristic 15 nm spectral 
shift in the flavin absorption is observed on light activation. 
However, this mutant has greatly reduced antirepressor activity 
compared to wild type AppA.[6]  The TRMPS measurements 
show that the effect of flavin excitation on the protein modes is 
greatly attenuated in W104A. However, the dynamics 
associated with structure change around the carbonyl mode 
(1700 cm-1) are accelerated from microseconds to nanoseconds. 
We ascribe this to a short circuiting of the structure change, 
such that changes in the vicinity of the chromophore occur 
rapidly, but are not communicated further. This confirms the 
key role of W104A in signaling state formation.  

Conclusions 

Ultrasensitive transient IR spectroscopy has provided new 
insights into the mechanism of action of BLUF domain proteins 
from femtoseconds to milliseconds. 

A series of TRIR studies have been conducted to probe the 
primary photochemical event, including: AppABLUF; a series of 
mutants of AppABLUF; unnatural amino acid substituted 
AppABLUF; three different BLUF domains.[1] These 
experiments do not support a key role for a metastable radical 
intermediate, which featured in many proposed mechanisms. 
Rather we proposed an alternative non-radical pathway. 

The evolution of the vibrational spectrum of AppABLUF has 
been followed over eight decades in time to map out the 
pathway of structure change following flavin 
photoexcitation.[2] The timescale for the structure change was 1 
– 10 microseconds, and the role of some key residues was 
demonstrated. 
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