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Introduction 

Effective imaging of optical defects in masks for EUV 
lithography requires the use of the same wavelength as the 
target design wavelength – so-called ‘actinic’ imaging. For 
next-generation lithography at 13.5 nm, microscopy options are 
limited by the difficulty of obtaining both optics and sources, 
and scanning microscopy using a synchrotron source is the 
norm. In this work, we describe development of an alternative 
13.5nm imaging system using a source based on high harmonic 
generation1at the Artemis laser facility, and coherent diffractive 
imaging (CDI) techniques2. The requirements on the source are 
considerable –CDI requires high source coherence, implying 
narrow bandwidth: in this case, a single harmonic. XUV flux is 
also critical for CDI measurements, as high signal to noise 
scattering patterns are needed for accurate phase reconstruction. 

This paper will describe testing of several experimental HHG 
configurations using the Artemis laser, to evaluate the 
maximum flux available at 13.5 nm. The experimental 
arrangements necessary for filtering down to a single harmonic 
will be described, and progress toward 13.5 nm imaging will be 
reported. 

HHG flux comparisons 

Efficiency in HHG is influenced by many factors. High 
efficiencies require effective phase matching3, careful 
management of ionization4, and use of appropriate wavelengths.  
The Artemis laser provides a number of options for different 
HHG schemes which each provide different efficiencies and 
phasematching possibilities. The initial aim of our work was to 
provide comparison of several different schemes at a specific 
wavelength, in this case 13.5 nm, in order to assess which 
would be the most effective for use in real experiments. 
Phasematching in all cases was achieved via balance of Gouy 
shift & atomic phase in a gas jet, as capillary generation is not 
available at Artemis. Gas species and pump wavelength (and 
energy) were varied and harmonic output measured. 

The different schemes tested were: (1) Ne gas, pumped with 
pulses at 800 nm, energies up to 5 mJ. (2) Ar or Ne Gas, 
pumped with a combination of 800nm and its second harmonic 
at 400nm (3) Ar gas, pumped using the output of the TOPAS 
OPA system at different wavelengths between 1 – 1.5µm. In 
principle, the use of longer wavelengths can extend HHG cutoff 
for a given intensity5, but the rapid reduction6 of single atom 
efficiency with wavelength (~λ-6) must be balanced against 
extension of cutoff. Isolated reports of very large efficiency 
increases with simultaneous 800 and 400 nm pumping make 
that option worth testing.  

The direct measurement of total flux for each scheme pumped 
by a single source is important, as the available pulse energies 

are limited at each wavelength – as an example, although 
pumping at 1300 nm may produce higher cutoffs, only 1 mJ is 
available at Artemis, whereas over 5 mJ are available at 800nm. 
Similarly, only low energy pulses at 400 nm are available, so 
comparison of equal energy pulses is not useful. 

Very different pump intensities were available at each 
wavelength, so the focusing geometries were changed between 
wavelengths to optimize ionization level. For 800nm pumping 
of Ne, a 1m focal length mirror was used with up to 5 mJ/pulse; 
for 1300 nm pumping of Ar, a 0.5m focal length mirror was 
used, with ~1 mJ/pulse. For 800nm + 400 nm pumping, a 0.5m 
focal length mirror was used for focusing, and the maximum 
pulse powers used were 2.5mJ at 800nm, and 400 mJ at 400nm. 
No adjustable delay was available for the 800+400nm 
experiments, so the 400 nm pulses were generated inside the 
vacuum chamber, resulting in a walkoff of ~10 fs between the 
800 and 400 nm pulses. The 800nm and 400 nm pulses had 
perpendicular polarizations. 

 

Figure 1 - comparison of spectra from different generation 
experiments. The dark blue line is generation in Ar gas 
using 800nm; green is using Ne with 800 nm pumping. Red 
is pumping Ar gas at 1300nm and has been multiplied by 10 
for visibility, and light blue is combined pumping at 800 & 
400 nm. The dotted vertical lines indicate the cutoff of an Al 
filter (73 eV, used as an aid to wavelength calibration) and 
the target photon energy (93 eV). 

Figure 1 shows the relative XUV intensities generated at 
wavelengths between 50 nm and 10 nm (30 eV – 100 eV) for 
four different pumping schemes. The spectra were measured 
using a flat-field spectrometer, and the relative intensity scale is 
correct. In all cases, intensity, gas pressure, and gas jet position 
were optimized as far as possible. 

Pumping of Ar at 800 nm (dark blue) produces little XUV 
above ~60 eV because of the Cooper minimum7. Pumping Ne 
gas in the same geometry produces a significant extension of 
the observed XUV radiation out past 100 eV, at which point the 
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and M2
y = 13. The separation of the foci in vertical and 

horizontal planes of 0.8mm arises from the use of an off-axis 
spherical mirror for focusing.  

The relatively high values of M2 probably arise from 
aberrations in the XUV mirrors, whose substrates are only 
polished to flatness appropriate for optical wavelengths. For 
XUV imaging, the ability to focus to ~10 µm is enough to fill a 
scanning pinhole, and phase errors will not affect the CDI 
process. In a ptychography experiment, the probe beam phase is 
measured as part of the process, allowing confirmation of the 
propagation measurement.  

Conclusions 

Imaging using CDI in the XUV requires a high flux, focused 
XUV beam.  In this paper we have described initial 
optimisations of HHG at Artemis for 93 eV photons, suitable 
for use in investigating defects in lithography phase masks. The 
flux is measured, and the filtering properties of Mo thin films 
for separation of the laser and the XUV are characterized. The 
focusing properties of the EUV mirrors has been evaluated, and 
spot sizes measured. For imaging purposes, the measured flux is 
adequate, but higher flux would improve things considerably. 
The spot sizes measured would be appropriate for 
ptychography. Before imaging can be performed, measurement 
of the spatial coherence of the XUV output would be an 
important further test.  
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