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Introduction 

Highly chirped ultrabroadband pulses play an almost ubiquitous 

role in ultrafast laser science, most notably in [optical 

parametric] chirped pulse amplification ([OP]CPA) laser 

systems [1,2], but also with applications in dispersive Fourier 

transform spectroscopy (DFTS) [3], impulsive molecular 

alignment [4], coherent control [5], chirp-assisted sum-

frequency generation [6], and telecommunications [7] to name 

just a few. An accurate means to quantify not only the linear but 

also the nonlinear dispersion of these highly chirped pulses 

enables optimal performance of the laser systems and improve 

the experimental capabilities of any applications that use them. 

The latest [OP]CPA laser systems, tasked with the objective of 

higher pulse energies, larger bandwidths and shorter pulse 

durations, place more stringent demands on the ability to 

control the nonlinear dispersion of the pulse such that near 

Fourier limited durations upon recompression are obtainable 

[8,9]. These systems require a careful design and 

implementation of large-scale and/or complex 

stretcher/compressor configurations, potentially in conjunction 

with adaptive optics. The large number of degrees of freedom, 

cost and complexity of the dispersive elements, and practical 

difficulties due to the large optics employed inside vacuum 

chambers in the case of ultrahigh peak power systems such as 

Vulcan and Gemini, makes it desirable to be able to accurately 

and rapidly measure the nonlinear dispersion of the chirped 

pulse in order to achieve maximum performance from the laser 

system via optimization of each element of the laser chain in 

situations where a compressed pulse is neither available or 

easily generated.  

One particular laser system where the effects of the nonlinear 

chirp are especially acute is the chirp-compensated (CC-) 

OPCPA [9]. In a CC-OPCPA, the dispersion of highly chirped 

broadband pump and seed pulses are chosen to ensure that the 

instantaneous frequencies that overlap at any moment in time 

are perfectly phase matched, effectively compensating the 

dispersion of the nonlinear medium and enabling amplification 

of large bandwidths in a collinear geometry. This geometry 

allows the use of the extremely broadband idler to be used 

without having to compensate for angular dispersion - this is 

particularly advantageous for passive carrier-envelope phase 

(CEP) stabilization and frequency tuning of the system and has 

the potential to improve the contrast in the compressed pulses. 

Since the frequency-dependent group delay (GD) of the pump 

and seed need to be matched to better than ~1% over the whole 

duration of the pulse, a coarse measurement of the pulse 

duration or average group delay dispersion is not sufficient. The 

ability to accurately characterize the exact nonlinear chirp of 

both the pump and seed would significantly aid in the design 

and implementation of the optimal compressor to generate near 

Fourier transform limited (FTL) pulses after amplification. 

Existing characterization methods 

The most widely known ultrashort pulse characterization 

methods include spectral phase interferometry for direct 

electric-field reconstruction (SPIDER) [10], frequency resolved 

optical gating (FROG) [11] and more recently dispersion-scan 

(DS) [12]. Since DS requires the net dispersion of the pulse to 

be tuned from positive to negative values, it is more generally 

suited to well compressed pulses. SPIDER requires the 

upconversion of the test pulse with a quasi-monochromatic 

frequency, thus practical limitations restrict its use typically to 

several picoseconds. In principle FROG can retrieve highly 

chirped pulses provided a suitably long delay stage. However, it 

was found that existing pulse retrieval methods such as the 

principle component generalized projection algorithm (PCGPA) 

[13] and time-domain ptychography [14] do not converge for 

highly chirped pulses, and thus we developed an alternative 

algorithm based on the stationary phase approximation (SPA). 

Due to the limited delay range that can easily be achieved in a 

single-shot geometry, we then applied the SPA to a SPIDER-

like measurement and developed a new method that we call 

chirped heterodyne interferometry for measuring pulses 

(CHIMP) that in principle can enable single-shot 

characterization. 

Stationary Phase Approximation FROG 

A monotonically chirped pulse can be defined as one in which 

the group delay dispersion (GDD), 𝜙′′(𝜔), is of constant sign 

and large magnitude relative to the bandwidth of any spectral 

features Δ𝜔min for all frequencies 𝜔, 

|𝜙′′(𝜔)| ≫
2𝜋

Δ𝜔min

. 

Under these conditions, the instantaneous temporal intensity can 

be calculated according to the SPA as 

𝐼[𝑡 = 𝜙′(𝜔)] ≈
𝐼(𝜔)

𝜙′′(𝜔)
. 

A measured second harmonic generation (SHG-) FROG trace 

can be written as 

𝐹(𝜔3, 𝜏) ≈ 𝜂 (
𝐼(𝜔1)

𝑛(𝜔1)|𝜙′′(𝜔1)|
) (

𝐼(𝜔2)

𝑛(𝜔2)|𝜙′′(𝜔2)|
)

× (
𝜔3|𝜙′′(𝜔3)|

𝑛(𝜔3)
) sinc

2 [
Δ𝑘(𝜔1 , 𝜔2)𝐿

2
] 

where 𝜂 relates to the SHG efficiency, 𝐼(𝜔) ∝ 𝑛(𝜔)|𝐸(𝜔)|2 is 

the spectral intensity, 𝜔3 = 𝜔1 + 𝜔2 is the sum frequency, 

𝜙′(𝜔1) = 𝜙′(𝜔2) + 𝜏 are the GDs of the interacting 

frequencies at a given delay measurement 𝜏, 𝑛(𝜔) is the 

refractive index and Δ𝑘(𝜔1, 𝜔2) = [𝑛(𝜔3)𝜔3 − 𝑛(𝜔1)𝜔1 −
𝑛(𝜔2)𝜔2]/𝑐 is the phase mismatch. 

At present, we have not found a generalized projection 

algorithm that can be used to robustly extract the spectral phase 

(and intensity) from the analytic expression for the SPA-FROG 
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trace. We therefore used standard optimization techniques such 

as the downhill simplex method and evolutionary algorithms, 

which were found to converge provided the SPA is valid. 

Chirped Heterodyne Interferometry for Measuring Pulses 

It is possible to extend the SPA to consider the spectral phase of 

the sum-frequency field between the two time-delayed 

monotonically chirped replicas, 

𝜙SFG(2𝜔, 𝜏) ≈ 2𝜙(𝜔) + 𝜔𝜏 −
𝜏2

4𝜙′′(𝜔)
. 

If this sum-frequency field is interfered with a second sum-

frequency field generated with a different time delay, 𝜏 − 𝛿𝜏, 

the phase of this interferogram can be approximated as 

𝜃(2𝜔, 𝜏, 𝛿𝜏) = 𝜙SFG(2𝜔, 𝜏 − 𝛿𝜏) − 𝜙SFG(2𝜔, 𝜏)

≈
2𝜏𝛿𝜏 − 𝛿𝜏2

4𝜙′′(𝜔)
− 𝜔𝛿𝜏. 

By using an appropriate geometry, it is possible to rearrange 

this equation to give the desired GDD in terms of measurable 

quantities, as will be discussed in the next section. 

Experimental Demonstrations 

We performed proof-of-principle experimental demonstrations 

of the two techniques using the setup depicted in figure 1, 

measuring a chirped pulse exiting a titanium sapphire CPA 

before re-compression. The pulse bandwidth was 55nm and the 

stretched pulse duration was 32ps (both values corresponding to 

the full width at 1% peak intensity), giving a time-bandwidth 

product of ∼825. This pulse, after frequency doubling in a 200 

µm thick type I BBO crystal, is used as a pump in a CC-

OPCPA, as such the nonlinear chirp of this pulse is critical. In 

order to perform our measurements, a Mach-Zehnder 

interferometer combined with a Michelson interferometer was 

inserted into the beam path (before the lens that focuses the 

beam in to the BBO) to generate two spatially offset beams that 

spatially overlap when loosely focused into the crystal. After 

the crystal, the frequency mixing signal between the two input 

beams was spatially filtered and its spectrum measured on a 

single array spectrometer. 

 

Figure 1 | Experimental FROG and CHIMP setups. An input 

chirped test pulse is split into two spatially separated beams 

using a Mach-Zehnder interferometer. In the upper arm, a 

Michelson interferometer is used to generate two time-delayed 

replicas. The two beams are focused and spatially overlapped in 

a 𝝌(𝟐) nonlinear crystal whereby they frequency mix to generate 

the chirped signal pulses which are detected on a spectrometer. 

For the FROG measurements, one arm of the Michelson 

interferometer was blocked, generating two time-delayed pulse 

replicas. The measured and reconstructed FROG traces are 

shown in figure 2. The reconstruction was achieved using a 

downhill simplex minimization of the standard FROG error 

using a 3rd order polynomial for the GDD (i.e. 5th order 

polynomial in spectral phase) and 60 sampling points for the 

fundamental spectrum. The zero time-delay and crystal 

thickness were also included as fit parameters. The retrieved 

GDD and spectral intensity are plotted in figure 4 as a red line 

and shaded area respectively. 

 

 

Figure 2 | (a) Measured and (b) reconstructed SHG-FROG 

traces. 

All three arms were unblocked for the CHIMP measurements 

and are plotted in figure 3. The collinear delay 𝛿𝜏, which 

remained constant throughout, was calibrated by moving the 

spectrometer to measure the interference pattern of the collinear 

fundamental pulses after passing a long-pass filter: the phase of 

100 interferograms was extracted using the Takeda algorithm 

[15] and a weighted linear fit applied to each and the average 

slope calculated, yielding a delay of -1.47889(13)ps. The non-

collinear delay 𝜏 cannot be unambiguously determined since it 

depends on the spatial co-ordinate, although differences in the 

delay 𝜏 = 𝜏0 + Δ𝜏 can be obtained using an encoded delay 

stage (Newport CONEX-AG-LS25-27P). The phase of the 

interferogram can then be written as 

𝜃(2𝜔, Δ𝜏, 𝛿𝜏) = Γ(𝜔)Δ𝜏 + 𝜁(𝜔) 

where 

Γ(𝜔) =
𝛿𝜏

4𝜙′′(𝜔)
. 

The spectral phase of the test pulse is then obtained by 

performing a weighted linear fit for each frequency and scaling 

by the fixed delay to obtain the GDD 𝜙′′(𝜔) ≈ Γ(𝜔)/
(4𝛿𝜏) which can then be integrated twice. The retrieved GDD is 

plotted as a blue line in figure 4. 

 

Figure 3 | (a) Measured CHIMP interferograms and (b) selected 

lineouts of the measured interferometric intensity (shaded 

curves) and extracted phase (solid lines). 

The accuracy of the methods were confirmed by comparison to 

Fourier transform spectral interferometry (FTSI) [16] 

measurements of the pulse stretcher placed before the amplifier 

and then estimating the additional dispersion of the amplifier 

itself. The results are plotted as a green line in figure 4. The 

GDD exhibits large noise since the pulse duration is much 

longer than the coherence time of the spectrometer, thus only a 

small fraction of the spectrum exhibits interference fringes for a 

given delay, therefore the GDD was calculated by stitching 

together the various local GDs. 



Figure 4 | Measured and retrieved spectral intensity (shaded) 

and GDD (solid lines). 

There is a small offset (~3%) in the mean GDD of the FROG 

results compared to the CHIMP and FTSI because the stretcher 

had been tuned to a slightly different setting. However, the 

higher order dispersion (e.g. GDD slope = third order 

dispersion) matches well. The CHIMP and FTSI data were 

obtained with the same setup and show excellent agreement. 

Conclusions 

We have shown that using the SPA applied to SHG-FROG 

measurements of highly chirped ultrabroadband optical pulses, 

it is possible to accurately retrieve the nonlinear dispersion and 

spectral intensity. Since SHG-FROG is already commonly 

utilized in many ultrafast laser labs, we believe existing users of 

the method can be utilize this simple algorithm to robustly 

measure highly chirped pulses. By extending the SPA further to 

an interferometric geometry, we have shown that it is possible 

to extract the GDD of the pulses using a direct (i.e. non-

iterative) algorithm using our CHIMP method. Although the 

current proof-of-principle demonstration requires scanning, the 

method can be extended to a single-shot geometry, for example 

by interfering the chirped sum-frequency signal with the 

chirped second-harmonic signal. We believe that the ability to 

rapidly measure, with single-shot capability, and reconstruct the 

nonlinear dispersion of highly chirped pulses will prove 

beneficial in the development of large-scale [OP]CPA laser 

systems as well as finding uses in other applications that make 

use of them such as dispersive Fourier transform spectroscopy. 
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