
The use of the 2D code POLLUX in modelling extreme ultra-violet laser
interactions

Contact: andrew.rossall@york.ac.uk

A. K. Rossall and G. J. Tallents
York Plasma Institute, Department of Physics,
University of York,
YO10 5DD, United Kingdom

Abstract

A simulation study is presented examining the interac-
tion of moderate irradiance (> 109 W cm−2) extreme
ultra-violet (EUV) lasers with solid material. By modi-
fying the radiative-hydrodynamic code, POLLUX, to in-
clude absorption via direct photoionisation and other rel-
evant atomic physics, the unique ablation properties of
EUV lasers has been investigated. The increased target
penetration due a typically higher than solid critical den-
sity, results in direct heating at solid density, producing
warm dense matter. To demonstrate this, the example
of an Ar based capillary discharge laser (λ = 46.9nm)
interacting with a planar plastic target has been simu-
lated. The produced plasma is shown to be close to solid
density with a temperature of ∼ 2 eV.

1 Introduction

Extreme ultra-violet (EUV) lasers have the brilliance re-
quired to directly generate plasma from solid material.
Novel experiments are being carried out at facilities such
as FLASH in Hamburg [1, 2, 3] or using table-top sys-
tems such as the capillary discharge laser [4, 5, 6, 7]. By
irradiating a solid target with an EUV laser, the sample
is heated via direct photoionisation with a high target
penetration, which results in temperatures of a few eV
at densities close to solid. Visible and infra-red laser
pulses cannot penetrate directly into solid material as
the critical density is below that of the solid target, re-
sulting in the majority of the heating occurring in the
expanding plasma. Reducing the wavelength to the EUV
region allows for a tighter focus, due to the reduction in
the diffraction limit, and provides higher target pene-
tration. These are potentially desirable properties for a
number of applications, such as, micro-machining, mass
spectrometry and the coating of refractory material on
to substrates. The plasmas produced by the EUV in-
teraction are in the warm dense matter (WDM) regime
and could aid our understanding of the interiors of Jo-
vian planets [8] and inertial confinement fusion [9], as the
compression pathway of the D-T pellet across the tem-
perature/density plane passes through the WDM regime.
The presented work examines the use of the radiative hy-
drodynamic code POLLUX, modified to include atomic
physics relevant to the EUV interaction, to model ab-

lation and the properties of a plasma produced by irra-
diating a solid plastic target with an Ar based capillary
discharge laser, operating at λ = 46.9nm (Ep = 26.4eV),
with a pulse length of 800ps and a fluence of 8 J cm−2.

2 POLLUX

POLLUX is a 2D Eulerian radiative-hydrodynamic code,
written at the University of York, and was originally de-
veloped to simulate the interaction of optical and infra-
red high power laser irradiation of a solid target and the
subsequently produced strongly ionised plasma [10, 11].
The code solves the three first-order quasi-linear partial
differential equations of hydrodynamic flow using the
flux corrected transport model of Boris and Book [12]
with an upwind algorithm [13] for the first term. En-
ergy is absorbed by the plasma and distributed through
electron-ion collisions, the equilibration of which is deter-
mined by the Spitzer plasma collision rate [14]. For cal-
culation of the equation-of-state (EOS) variables, POL-
LUX utilizes inline hydrodynamic EOS subroutines from
the Chart-D equation-of-state package developed at San-
dia National Laboratories [15].

3 Atomic Physics

The modifications to the code include the addition of
a superconfiguration approach to model ionisation de-
pendant atomic structure, reducing the total number of
levels and thus the run time, enabling more efficient use
with a fluid code. The Flexible Atomic Code (FAC)
[16], is used to solve the radial wavefunction to provide
a detailed list of levels for a specific element. Energeti-
cally similar levels are grouped into a set of ’supershells’,
where the energy of the supershell is the average en-
ergy of the included levels weighted by degeneracy. This
structure, combined with data for the photoionisation
cross-sections are included in an input file for POLLUX.
The amount of energy deposited by the EUV laser in
each of the target cells is then determined simply by us-
ing the Beer-Lambert law, accounting for both inverse
bremsstrahlung and photoionisation. The energy ab-
sorbed via inverse bremsstrahlung is transferred to the
plasma electrons as is the excess photon energy above
the ionisation threshold (Ep − Ei). To ensure conserva-
tion of energy, the ionisation energy, Ei is transferred
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to the chemical potential of the ions in the EOS rou-
tine. Ionisation and excited level populations are calcu-
lated assuming local thermodynamic equilibrium (LTE)
and using the Saha-Boltzmann relation. Although the
plasma created on a short timescale is expected to be a
highly non-equilibrium plasma, it has been shown that
due to the high densities, the plasma equilibrates on a
timescale of 10s of femtoseconds [17, 18]. The assump-
tion of LTE on the hydrodynamic timescale (>1ps) is
therefore valid in this case.

4 Simulations

The simulations shown here (figure 1) are for the inter-
action of a capillary discharge laser, operating with a
photon energy of 26eV, a pulse length of 800ps, and a
fluence of 8 J cm−2, with a planar Parylene-N target.

Figure 1: Mass density (top) and electron tempera-
ture plots (bottom) showing the ablation and heat-
ing of Parylene-N by an EUV capillary discharge laser
(Ep = 26eV), with a peak irradiance of 1×1010 W cm−2

and focal diameter of 650nm. . The simulation time is
at the end of the pulse, t = 800ps. EUV laser propagates
from right to left, along the y = 0 axis.

5 Conclusion

A radiative-hydrodynamic code, developed to study high
power optical laser interactions with solids, has been

modified to include absorption via photoionisation, rele-
vant to the interaction of EUV lasers with matter. A
simulation study has been carried out examining the
ablation properties of a capillary discharge laser where
it has been shown that such lasers can be used to di-
rectly generate warm dense matter. EUV lasers have
favourable ablation properties, such as increased target
penetration and a reduction in focal spot size, making
them useful in applications such as micro-machining.

References

[1] Costello J T 2007 Journal of Physics: Conference Series 88
012057

[2] Berrah N, Bozek J, Costello J, Düsterer S, Fang L, Feldhaus
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