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1 Introduction

Electrostatic potentials in dense plasmas are screened
by the presence of free charge carriers. Screening alters
the strength and shape of the potential and therefore
modifies, among other properties, the wavefunctions and
binding energies of bound states in the plasma [1]. The
screening of the electron-core potential typically leads to
a lowering of the ionisation energy known as continuum
lowering or as ionisation potential depression (IPD) and
can greatly affect the ionisation state of partially ionised
plasmas. Consequently, IPD may also strongly influence
a wide variety of plasma properties [2].

Models to describe screening by electrons and ions in
local equilibrium have been developed for many years
[3]. One of the most popular model was proposed by
Stewart and Pyatt [4] and interpolates between the high-
temperature, low-density Debye limit [3] and the low-
temperature, high-density limit of the ion sphere model
[5]. Of course, these easy screening models have been
challenged by more elaborate theories (see e.g., Ref. [6])
however only recent contradictory experimental results
[7, 8] have posed serious questions about the applicability
of these models.

The use of high-power, short-pulse laser systems and
free electron lasers in the VUV and X-ray domain
(XFELs) allow highly excited, solid-density materials
to be created and probed on femto and picosecond
timescales. Experimental results [9] and simulations
[10, 11] suggest the presence of a considerable non-
equilibrium component to electron populations in such
strongly driven systems. A well-founded theoretical ap-
proach for continuum lowering in plasmas with non-
equilibrium electron distributions is therefore needed if
we are to correctly analyse such materials. Such a gen-
eralised theory might also shine new light on the contra-
diction of recent experiments.

2 Theory

Using the linear approximation for the density response,
the response of the free electrons to an imposed potential
can be described by the dielectric function

V S(q, ω) =
V

|ε(q, ω)| . (1)

For a Coulomb potential in the static long wavelength
limit, i.e., q → 0, ω → 0, the Debye potential with a

screening length κ is obtained

V D(q) = V S(q, 0) = − 1

ε0

e2

(q/~)2 + κ2
(2)

and by comparison, we obtain for the screening length

κ2 = [ε(0, 0)− 1] (q/~)
2
. (3)

For weakly coupled plasma components, the random
phase approximation can be applied and the dielectric
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Figure 1: a) Example distribution functions and corre-
sponding values for ∆I. The cold part of the distribution
function (shown in black) and the total energy are the
same in all cases. b) Calculated change in ionization po-
tential depression as an increasing number of electrons
are moved from a Boltzmann-like hot tail to Gaussian
shaped features.
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Figure 2: Calculated IPD for transitions in Aluminium at two ionization levels. The ion density is the solid
state value ni = 6.0 × 1022cm−3. The temperatures shown are for the limiting equilibrium distribution, obtained
as the energy in the bulk reaches 1. For comparison, values calculated according to the Stewart-Pyatt [4] and
Ecker-Kröll [13] models are shown.

function is given by [2]

ε(q, ω) = 1+
~2e2

ε0q2

∫
dp

(2π~)3
fe(p + q)− fe(p)

~ω − E(p + q) + E(p) + iε
.

(4)
This approximation is valid for the electrons in many
dense plasmas and warm dense matter systems as either
the thermal energy kBTe or the Fermi energy dominates
the correlation energy.

The static long wavelength limit of the RPA dielectric
function now leads to an explicit form for the screening
length

κ2(t) =
e2

ε0
· 4πme

∫ ∞

0

dp

(2π~)3
fe(p, t) , (5)

which is given in terms of the (nonequilibrium) electron
distribution function.

Assuming strongly localised bound states, we expand
the screened potential around r = 0

− ze2

4πε0r
e−κr ≈ − ze2

4πε0r
+
zκe2

4πε0
+O(r) (6)

and obtain for the reduction in ionization potential

∆I =
zκe2

4πε0
. (7)

Via the generalised form of the screening length, the IPD
is now related to the electron distribution which may
take any nonequilibrium form.

We approximate the distribution function by the form

fe(p) = fcold(nc, Tc) + fhot(nh, Th) + fbump(p0, pb, nb) ,
(8)

which combines two equilibrium distribution functions
at different temperatures with a Gaussian bump with
adjustable position and width. This form has been
used previously in the study of Thomson scattering from
nonequilibrium electrons [12] and roughly reproduces the
features observed in simulations [11]. Gaussian bump
features are typically produced at photoelectron and
Auger electron energies. Ultra-fast relaxation of these
bumps leads to a hot, Boltzmann-like tail, whilst pre-
existing conduction band electrons remain relatively cold
and are described by a Fermi distribution with Tc. Com-
bining these three components makes it possible to pro-
duce distribution functions of almost arbitrary shape
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within this framework. For this model to remain a good
approximation to a physical distribution, the hot tail
must remain strongly non-degenerate. Otherwise, the
model may yield occupation numbers greater than unity
at low momenta.

3 Calculations

First we examined the sensitivity of continuum lowering
to the shape of the high energy part of the distribution
function (fhot+fbump). Due to their higher energy, these
electrons should respond only weakly to any imposed
potential, and should contribute little to the screening
of the potential. Sensitivity to the exact distribution of
high energy electrons should therefore be low.

The quantity ∆I was calculated for distributions with
a hot tail and up to two Gaussian bumps, whilst the
cold part of the distribution was kept fixed. All the dis-
tribution functions studied contained the same total en-
ergy. The IPD was indeed found to be insensitive to the
particular shape of the high-energy part of the electron
distribution function, with ∆I varying by only ∼ 3%
(see Fig. 1). Based on this finding, subsequent calcula-
tions applied a simplified two-temperature version of the
electron distribution function, comprising the cold Fermi
part and the hot Boltzmann tail only.

In a second step, we studied the effects of changing the
shape of the nonequilibrium distribution function. For
a fixed total energy, we varied the energy between the
cold bulk and the hot tail and calculated the resulting
IPD. Two possible models for the electron density were
considered. In the first case, the density in each part
is held fixed. The temperatures of the two distributions
then relax towards each other as energy is moved from
hot to cold. In the second case, electrons are added to the
cold part in proportion to energy. This treatment gives
a hot tail with constant temperature and equilibrium is
reached as the energy and density in the tail approaches
zero.

The results in Fig. 2 demonstrate a significant increase
in IPD with the amount of energy in the hot tail of the
distribution. The increased screening due to the lower
temperature in the main part of the electron distribution

(Tc) overcompensates for the reduction in screening by
high energy electrons. The two models for density give
qualitatively similar results, suggesting that the hot tail
is most significant as an energy sink.

4 Conclusion

We have calculated continuum lowering or IPD due to
nonequilibrium electron distributions within the linear
response formalism. We find that the contribution to the
screening length from high energy electrons is small and
that the form of any hot tail does not significantly affect
the ionization potential. In particular, the presence of
Gaussian features in the tail does not alter continuum
lowering when compared to a Boltzmann-like tail.

Although the high-energy electrons do not contribute
significantly to screening, they do act as an energy sink,
causing the remaining bulk part of electrons to be colder
than in a case assuming an equilibrium distribution with
the same total energy. A nonequilibrium distribution
will therefore result in larger continuum lowering when
compared to the equilibrium case. Depending on the
fraction of energy contained in the high-energy part of
the distribution function, changes in the IPD may be
significant.
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