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Furthermore, we carried out an additional experiment to 
confirm that conversion efficiency could be increased by 
optimising the input polarisation. To do this we introduced a 
quarter and half wave-plate at the output of the amplifier before 
the crystal to achieve linearly polarised output. We measured 
the polarisation at the output at low energy and after adjustment 
of the wave-plates achieved 98% polarisation in the ‘o’–plane. 
Under these conditions, the frequency doubling efficiency 
increased from 72% to 78%. A graph depicting this is also 
shown in Figure 14. These results confirm that LBO is currently 
the best choice of non-linear crystal for frequency doubling the 
output from DiPOLE. All these experiments were carried out 
with no active cooling for any of the crystals tested. 

 
Figure 14: Comparison of SHG conversion (green) and efficiency 
(red) versus input energy for LBO crystal with (solid (a, c)) and 
without (dashed (b, d)) polarisation correction. 

Current plans 

The current plan for DiPOLE is to continue to use it as a test 
bed for optical designs, new components and coatings that will 
be used on DiPOLE100. We plan to test gain media polished by 
different techniques with a view to improving their damage 
resilience, and to install an AO mirror to improve the output 
wave front quality. This should further enhance the frequency 
doubling efficiency. Furthermore, we are currently testing an 
active beam stabilisation system on the DiPOLE front end in 
order to improve long-term pointing stability. Beam steering 
will be used extensively on DiPOLE100. 

Conclusions 

DiPOLE has achieved its design specification of 10 J pulse 
energy at 10 Hz repetition rate in a 10 ns duration pulse. 
DiPOLE has been successfully operated for 48 hours at output 
energy of 7 J with an energy stability of 0.85% rms.  

DiPOLE has also been used to generate 4.7 J of 515 nm 
radiation at 10 Hz from 7.0 J input energy, with a maximum 
conversion efficiency of nearly 80% achieved using a LBO 
crystal. 
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