High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

Contact: james.green@stfc.ac.uk

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, D. Rusby, L. Wilson
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Oxon, OX11 0QX

R. J. Dance
York Plasma Institute, Department of Physics, University of York, York, YO10 5DD

R. J. Gray, D. A. MacLellan, P. McKenna
SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG

C. D. Murphy
SUPA, University of Edinburgh, Edinburgh, EH9 3JZ

Abstract

Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of $\sim 10^{21} \text{ Wcm}^{-2}$ was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell (PIC) simulations.

1 Introduction

Over recent years considerable effort has been expended on developing laser-driven ion sources for applications ranging from ion oncology [1] to proton radiography[2]. Promising characteristics such as high peak brightness, low emittance[3] and short pulse duration make using high intensity lasers for ion acceleration an attractive prospect compared to many conventional accelerator sources.

The drive towards higher proton energies with quasi-monoenergetic spectra has peaked interest in new acceleration modes such as radiation pressure acceleration (RPA)[4]. However there remains broad interest in developing laser-driven beamlines based on the more established mechanism of target normal sheath acceleration (TNSA)[5]. With less stringent requirements on laser intensity, contrast and targetry, TNSA remains easier to implement on a range of laser systems, and the characteristic quasi-thermal spectrum is well suited to applications such as isochoric heating [6] and time-resolved radiography [2].

Many key experiments in the field of laser-accelerated ion beams have been performed on large scale Nd:Glass laser systems where high laser pulse energies (>100 J) coupled with sub-picosecond pulse lengths have produced focused intensities of $\sim 10^{21} \text{ Wcm}^{-2}$ to accelerate the highest energy protons (~ 60 MeV)[7, 8, 9]. However recent years have seen the commissioning of an increasing number of high intensity Ti:Sapphire based lasers which operate at pulse lengths typically around 50 fs but with lower pulse energies ($\sim 0.5-10$ J). Such systems have the advantage that they not only occupy a smaller spatial footprint but they are able to operate at significantly higher repetition rates (typically 1 shot per minute here) when compared to similar intensity Nd:Glass lasers (~1 shot per hour). Many conceivable applications of laser-accelerated ion beams will not only require a low cost, compact system but also require operation at high repetition rates (>10 Hz). Ti:Sapphire lasers are most likely to fulfil these requirements, hence experimental effort to characterise and optimise ion acceleration processes using femtosecond laser sources is a crucial step towards many proof of principle experiments.

Until recently, results with Ti:Sapphire systems have been limited to maximum proton energies of <20 MeV [10, 11], with thin (<1 μm) targets typically used to maximise these energies for a given laser intensity. However in the last two years promising gains have been made using ultra-short pulses with Ogura et al.[12] and Jong Kim et al.[13] reporting maximum proton energies of 40 MeV and 45 MeV respectively.

In this paper we report on an experimental investigation into ion acceleration on a Ti:Sapphire-based laser which can produce a focused intensity of $\sim 10^{21} \text{ Wcm}^{-2}$. This is comparable to the highest intensity Nd:Glass systems but in a relatively compact area and operating at a significantly higher repetition rate. The interaction of this laser with aluminium target foils, ranging in thickness from 100 nm to 50 μm, generated proton beams which were then characterised. The variation of the maximum proton energy as well as the total beam en-
The variation in peak energy for each target thickness is likely due to a combination of factors, namely accuracy in target positioning, changes in laser pulse energy and stochastic variations in the pre-pulse profile. The highest detectable proton energy can be seen to increase rapidly as the target thickness is decreased from 50 µm to 6 µm to 100 nm the maximum proton energy rapidly tails off to an average of just 10 MeV.

Experimental results from several laser systems illustrate that for fixed laser parameters there will be an optimum target thickness for ion acceleration, at which the fast electron density that seeds the accelerating field at the target rear surface is maximised and the initial plasma-vacuum interface is still close to step-like [16, 17, 18]. The trend from figure 2 exhibits a similar profile to these results, suggesting that while a target thickness in the range of 2-6 µm is optimal in this case, acceleration in thinner targets may be inhibited by the presence of pre-pulse induced plasma formation on the target rear surface [19, 20].

To investigate this further the total proton dose (ex-
Figure 2: Maximum detected proton energy (squares) and conversion efficiency (circles, for \(E_p > 0.9 \) MeV) as a function of target thickness for Al foils. Data plotted are averages taken over a number of shots for each target thickness.

Figure 3: Experimentally obtained proton spectra, extracted from RCF stacks for 500 nm and 6 \(\mu \)m Al foil targets.

4 Discussion and Simulations

In order to better understand the regime of TNSA with the laser and target parameters being considered here, the 1D radiation-hydrodynamic code HELIOS[25] was first used to model the possible disruptive effects of ASE on the thinnest target foils. An ASE intensity of \(10^{11} \) Wcm\(^{-2}\), as measured from the autocorrelation scan, was used to irradiate 100 nm and 500 nm target foils along with a thicker 6 \(\mu \)m foil for reference. The target mass densities were plotted after 1 ns of simulation time (see figure 4), representing the conditions present at the time of the interaction of the main pulse.

For the thicker (6 \(\mu \)m) foil target pre-plasma expansion is evident at the target front surface, but the bulk of the target remains at solid density (2.7 gcm\(^{-3}\), leaving a steep density transition at the rear surface (as required for optimal sheath acceleration). As the target thickness is reduced, a similar front surface density ramp remains, but the profile at the rear surface is significantly disrupted for both the 500 nm and 100 nm cases, indicating non-ideal acceleration conditions.

Three models of the target at the time of the main pulse arriving were produced based on the aforementioned hydrodynamic simulations (figure 4), and the interactions of these model targets with the main pulse were simulated using the OSIRIS 2D3V PIC code[26]. An 8000×8000 grid was used for a simulation box of 32×32 \(\mu \)m. All targets were centred in the \(y \)-direction, and had a width of 20 \(\mu \)m with a top-hat profile in the \(y \)-direction. The \(x \)-profile and composition of the targets was determined from the output of the HELIOS simulations. In all three models the linearly polarized laser pulse was incident at 30 degrees to target normal, and centred in the \(y \)-direction. The laser pulse had a normalised vector potential, \(a_0 \), of 17, a triangular temporal profile with a pulse length of 50 fs, and a Gaussian...
transverse profile with a half-width of 1.5 \(\mu \text{m} \). Each species was represented by 16 macroparticles per cell. Simulations were run up to 250 fs. The initial electron temperature in the target was set to 4 keV.

The integrated proton spectra obtained from all three runs is shown in figure 5. Looking first at the maximum proton energy, it is clear that the cut-off energy follows a similar trend to that seen experimentally, with the peak proton energy resulting from the thicker, 6 \(\mu \text{m} \) target. Taking a cut-off point of around \(10^3 \) protons/MeV (corresponding to where the 500 nm spectrum tails off rapidly), the maximum proton energy is recorded as 33, 28 and 18 MeV for the 6 \(\mu \text{m} \), 500 nm and 100 nm foils respectively (see figure 6). While higher than measured experimentally, the trend is consistent. The presence of an extended pre-plasma at the target front surface, while common to each target thickness, has the effect of efficiently coupling the laser energy into the fast electron population [27]. To illustrate this an additional simulation was run with a step-like density gradient at the target front surface for the 6 \(\mu \text{m} \) thickness. For this case the peak proton energy was seen to fall by \(\sim 25\% \).

Looking at the spectra in figure 5 in more detail, it can be seen that the experimentally observed boost in lower energy (<15 MeV) proton number for 500 nm is also reproduced. Taking the integrated proton number for each target thickness, the 500 nm foil produces a total proton beam energy six times greater than for the 6 \(\mu \text{m} \) case, with this increase dominated by proton energies lower than 15 MeV (see figure 6). While it is clear that to obtain the very highest proton energies, a step-like rear surface density is still required, these simulations highlight that the presence of a modest pre-formed plasma on the target rear surface can still permit efficient TNSA. For the 500 nm Al foil, there exists a balance whereby a large electron number density at the target rear surface (due to the reduced thickness) can drive significant proton acceleration without the need for a step-like interface. In addition the simulations show that the initial density gradient on the rear surface leads to a piston-like acceleration [28], whereby protons accelerated in the high-density region (close to the target) catch up with those accelerated from the low-density region early in the acceleration process. This piston-like action leads to bunching of the proton population, boosting the lowest energy proton flux significantly. As the target gets thinner (100 nm) and further decompression occurs this is no longer the case, with both peak proton energies and total number falling.

5 Conclusion

We have investigated the production of high energy proton beams from an ultra-intense, Ti:Sapphire based laser in the TNSA regime. Using RCF stacks the maximum proton energies and beam energy content were measured over the whole beam profile. Under the laser contrast conditions tested during the experiment, it was found that the maximum proton energy peaked for target thicknesses in the range of 2-6 \(\mu \text{m} \). However the total energy contained in the recorded proton beam was found to be significantly higher for the 500 nm foil, peaking at \(\sim 440 \) mJ for one shot, corresponding to a laser-proton conversion efficiency of around 4 \%. Simulations together with experimental proton spectra reveal that this boost in proton number is dominated by lower energy (<15 MeV) particles. Although ASE-induced plasma formation on the target rear surface limits the maximum energy for such thicknesses, highly efficient proton beam production is still achieved. The high
proton numbers demonstrated here using a robust acceleration mechanism, are highly promising for a range of applications that require bright proton beams under high repetition-rate conditions. We believe these results to be a clear marker of the future capability of laser-driven ion applications with lasers like Astra Gemini, where technology development for future scaling to 10 Hz / 100 J operation within the next few years is rapidly progressing[29].

6 Acknowledgements

This work was supported by the EPSRC (grant number EP/J003832/1). The authors would like to thank the staff at the Central Laser Facility for supporting the experimental campaign.

References

