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Summary SRFORD

- “High Energy Density Science” (HEDS) broadly encompasses matter with energy
densities exceeding ~ 101" Jm3 : i.e. ‘cold’ solid matter at Mbar pressures, or dilute matter
at millions of Kelvin.

- Effectively these are the conditions met deep in the cores of planets, stars, and within
other astrophysical objects.

* The research field allows us to pursue fundamental science (e.g. astrophysics in the
laboratory), but also has potential application (high pressure superconductivity, novel
material synthesis, understanding of deformation at the atomic level...).

« X-Ray FELs have revolutionised this field both by providing means to, on their own,
create such conditions, but also, in conjunction with high power optical lasers, to probe
conditions made by other means with exquisite resolution.

* The UK has led this field at existing FELs, but is uniquely placed to construct its own
facility with capabilities unparalleled worldwide.
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A sample of topics being studied OXFORD

- Solids heated isochorically by an x-ray laser to millions of Kelvin can mimic conditions half
way to the centre of the sun - the FEL heats the sample before it has time to expand.

+ Plasmas in these conditions are poorly understood - at high density and temperature where
do bound states ‘end’ and the continuum starts?

« What are the transport coefficients, and what is the equation of state when these plasmas
are strongly coupled (thermal effects and coulomb energies are comparable).

* Optical lasers can, via ablation, subject matter to pressures far greater than possible by any
other means. Compression only lasts a few nanoseconds, but the femtosecond FEL can

then obtain high-quality diffraction patterns in 100 femtoseconds, recording the new phases.
We thus can explore conditions deep within the planets in our own solar system and beyond.

* Tracking new phases in real time may allow us to generate new materials with new
properties - optical, electrical, mechanical...

 Material deformation occurs by the generation and movement of defects - can we track
these in real time during ‘impact physics’?
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The experiment at the Linac Coherent Light Source

X-ray Free-Electron Laser OXFORD

LCLS pulse

Photon energy: 1460-1830 eV
Pulse length < 60 fs

Pulse Energy ~1.5 mJ
Bandwidth ~ 0.4%

Bragg
crystal

CCD

X-ray spectrometer: K-alpha
emission Al around 1500 eV

-—> e

1 micron thick Al _
Peak Intensity ~107 W cm-2 sample Diode

Vinko et al., Nature 482, 59 (2012)
Ciricosta et al., PRL 109, 065002 (2012)
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FELs can isochorically create high energy density plasmas

OXFORD
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Electronic structure of Aluminium
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Core-hole lifetime ~1fs, although we diagnose via observing K-alpha, it
is not the dominant decay mechanism.
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Electronic structure of Aluminium

Neutral Al
LCLS

K-alpha emission 100

@
10F

Attenuation Constant ™)

0.01 f

10 100 1000 10000
Photon Energy (eV)

Radiationless Auger decay is 30 times more probable, ejecting L
electrons into the continuum, that heat the other electrons within ~fsec
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Photo-ejection of electrons, and Auger heating strips the Al ions

Neutral Al: lonized Al: e.g. 6+

K-edge

As ionisation proceeds, note that both the K-edge energy, and the K-a energy increase with increasin
there are fewer L electrons to provide shielding.




If the FEL photon energy is too low, no K-a generated

Energies not to scale!

L: 2s2 2ps L: 2s2 2p3

Tuned BFEL

K: 1s2 photon j{energy

O O

Important to note: the heated continuum - many tens of eV, can further collisionally ionise the system.
No K-a will be seen if the K-edge energy of an ion exceeds the photon energy of the X-Ray Laser.




How do we model ionization at high densities, where screening and
or Pauli exclusion forces are strong

Continuum lowering models are Insulating plasma
challenged at high density
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Physical Review Letters 109 245003 (2012).
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Publications on IPD since 2012
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XFELs can clock sub-femtosecond electron collisional dynamics

*How quickly do electrons collisionally ionize in hot-dense plasmas?
*What are the timescales for electron ‘damage’ in dense systems?

X-ray pulse tuned to
bound-bound resonance

CH coating

Mg nanofoil (~50 nm)

325 um Si substrate

X-ray emission spectrometer
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Recent Fe opacity data from Bailey suggest a need to
explore radiation transport mechanisms in stars

Bb features:

+ different strength
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A higher-than-predicted measurement of iron
opacity at solar interior temperatures
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A new way to look at radiation transport and opacity in solid density

systems via emission spectroscopy oer
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A new way to look at radiation transport and opacity in solid density

systems via emission spectroscopy e o
OXFORD
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Laser Ablation

OXFORD

*Nanosecond laser irradiates an ablation and launches a pressure wave (or shock).

* The FEL records the diffraction pattern during the compression.

* Interferometry from the rear surface motion provides pressure diagnosi
VISAR measures
velocity and reflectance
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*Conservation relations => P =p, U, U,

plp, = 1/(1-U,/U,)

Temperature needs to be measured separately

Nanosecond lasers can induce multi-TPa
pressures for times of a few nanoseconds in
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Just a few years ago, ultrahigh-pressure phase diagrams,
for matter with core electrons, were very simple

Temperature (1000 K) |,

All high-pressure phase diagrams look similar:
simple melt curves, simple structures

Na: the prototypical simple metal

100 200 1,000

Pressure (GPa) =10 Mbar

* M. Marques et al., PHYSICAL REVIEW B 83, 184106 (2011)
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Many materials are now predicted to exhibit exotic behavior at HED
pressure

fcc

hcp
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Guest structure
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> THE UNIVERSITY
of EDINBURGH Creation of Host-Guest Structures

OXFORD

— host substructure
— guest substructure
(hk00) — common to both

No of atoms/cell = 16.4.2x(Cn/Ca). .



THE UNIVERSITY

of EDINBURGH Creation of Host-Guest Structures on nanosecond

timescales via shock compression A
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Recently discovered planets contain matter at millions (100°’s GPa) to billions
(100’s TPa) of atmosphere pressure, this is HEDS

S 11111

Radius (Re)
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Each circle is a planet
Observational data are limited
Need EOS and transport data/theory

Transport properties and temperature
can in principle be provided by inelastic
scattering from ion fluctuations
(phonons)

D. Swift, et al., 2012
S. Seager 2007
J. Eggert

exoplanet.eu/catalog/



(Pxford First experiments to measure ion-acoustic @) senenor
: % OXFORD
hysics. dynamics performed at LCLS

2w optical drive beams: 5J, 3ns

CS PAD with 50 ym phase plate
detector
Si(4,4,4)
20=30° | \ | mono
Si(4,4,4 sample D/D I Seeded
beam
analyzer
Be lens

Incident X-rays

Monochromator: AE/E=5x10-6

Square focus with
an energy gradient

diced Si(444) crystal with R=1 m & N
0=87"= ~100 meV @ 7919 eV Z

Huotari et al., J. Synchrotron Rad. 12, 425 (2006)



(Pxford

hysics.
Quantum bodies are treated as an
ensemble of classical trajectories,
but with the addition of a non-local
potential, giving full electron and
ion dynamics
No need to introduce an

unknown parameter (electron-ion
collision frequency)

Bohm-MD simulations performed
with 1024 atoms (on a laptop),
giving >104 increase in speed
with comparable TDDFT
simulations!

Bohm-MD can be implemented in
a fitting algorithm to predict plasma
conditions

Observation of ion acoustic waves in
dense plasmas (modelled with Bohm-MD
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A 100J laser (DIPOLE) gets us to several Mbar easily - higher with
convergent geometries. kd systems get us to the TPa regime

Laser Energy (J)

Peak Pressure
3w, Diamond Ablator

Vis - Septe;ni;‘e!r 5
12 ns Ramp, 3 ns Hold i 2008
T TT I L L I 1

10

Courtesy Jon Eggert 400 600 800 1000

*100 J, 10 Hz, nanosecond DiPOLE laser now
Diameter (um)

commissioned and ready to be shipped to
European XFEL
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Short-Pulse Physics OXFORD

 Thus far we have been looking at x-ray only experiments, and interactions with matter
compressed with nanosecond optical lasers.

* There is also a plethora of physics that can be pursued with femtosecond optical lasers
in the high intensity regime.

* The European XFEL has a 100-200 TW (40-fsec) optical laser alongside the x-ray laser.
« A variety of fundamental physics experiments have been proposed...

justin.wark@physics.ox.ac.uk
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Measurements of Vacuum Birefringence S

.....
~eu
...
-

signal photons

in the far field

high-intensity
pump

+ Highly polarised x-ray beams can be generated from multiple
diffraction in channel cut crystals

+ Rotation of some of the x-ray photons in an intense optical pulse
measures the birefringence of the vacuum.

* Figure from Felix Karbstein, Jena

* The effect is highly non-linear in optical laser energy and x-ray
wavelength.

justin.wark@physics.ox.ac.uk
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Gravity analogues and strong field QED

Electrons accelerated by lasers provide
means to test fundamental physics

We have proposed an experiment to look
for acceleration effects in scattering

=» Photons scattered by accelerated
electrons experience a frequency shift due
to ponderomotive motion (mass shift)

=>» Accelerated detector (the electron) would
see Unruh radiation

=» a=1025 g (laser intensity ~1019 W/cm2)
corresponds to T=104 K

=» Even if the laser intensity is below the
Schwinger’s limit, axion production is
achievable (possible tests for dark matter
theories)

Event Horizon

Event Horizon

’ Stationary
Observer
b - Black Hole
g

Hawking_/ kT:E
2mc

Radiation

/ \\
| Accelerating
| Observer
| . in Yacuum
ale ;

Radiation

=» For I=10'® W/cm?, E,,,~500 eV, 6=150 we
get (T.4-T) is a few hundred eV
(measurable!)

=» The original proposal required phase
stabilized optical laser and FEL

- Circularly polarized optical laser will relax
this requirement and make the
experiment technically feasible

to x ray spectrometer
and detector

Crowley et al., Nature Sci. Rep. 2012

FEL polarization

Optical laser
polarization

High-intensity laser Gas jet

10'° W/cm?

High-energy
laser 100 J, 1 ns




.- Exploring dense plasmas at 4th generation light sources

European

XFEL | Relativistic laser-matter interactions: HI laser

Phys. Plasmas 21, 033110 (2014)

Predicted SAXS (1019 ph, 8 keV)

Finite spot
electron energy density

+ ionization dynamics,
heating & resistivity

+ electron transport, return
current neutralization

+ filamentation, hole boring

+ e-e & e-i equilibration

* quasi-static fields

laser pulse |

-
= scattering

s

\alowlng down

SN
R, “collisions

1013 A/cm2, > 1000 T, 1013 V/m,
~keV , solid density

May 9, 2016 — Science seminar, University of Oxford
Ulf Zastrau — Group Leader HED



Opportunities for the UK

+ The UK HED community has been at the forefront of the use of 4th generation light sources.

+ To date, the optical lasers that have accompanied such FEL sources have, to a large degree, been ‘bolted
on’ to a fixed end-station design.

* Whilst both the construction and possible siting of a UK-FEL have yet to be decided, there is real-estate at

RAL which would clearly allow a UK-FEL to be co-located with the existing Central Laser Facility - allowing a
fully integrated approach to HED science from the start.

+ A personal view is that such thinking should be incorporated into the UK-FEL review process.

* We should be asking what new world-leading science is enabled by synergistically upgrading UK high power
laser facilities to be compatible with a UK-FEL capability (e.g. multi-kJ long pulse systems at high repetition
rate, co-location of FEL with Petawatt lasers etc. etc.).

justin.wark@physics.ox.ac.uk
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Summary

“High Energy Density Science” (HEDS) broadly encompasses matter with energy
densities exceeding ~ 101" Jm3 : i.e. ‘cold’ solid matter at Mbar pressures, or dilute matter
at millions of Kelvin.

Effectively these are the conditions met deep in the cores of planets, stars, and within
other astrophysical objects.

The research field allows us to pursue fundamental science (e.g. astrophysics in the
laboratory), but also has potential application (high pressure superconductivity, novel
material synthesis, understanding of deformation at the atomic level...).

X-Ray FELs have revolutionised this field both by providing means to, on their own,
create such conditions, but also, in conjunction with high power optical lasers, to probe
conditions made by other means with exquisite resolution.

The UK has led this field at existing FELs, but is uniquely placed to construct its own
facility with capabilities unparalleled worldwide.

justin.wark@physics.ox.ac.uk
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