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Introduction 
In this report, we present a derivation of scaling laws for laser-
plasma interaction in one-dimensional geometry, using photon 
kinetic theory.  The interest in scaling laws arises from last 
year's experimental results on mono-energetic electron 
acceleration with the Astra laser1).  These results are considered 
a major breakthrough for laser-plasma accelerated electron 
bunches in terms of beam quality.  Previously, the energy 
spectra were found to be typically Maxwellian2), which made 
laser-plasma based electron sources of limited interest for 
applications.  After the successful demonstration of mono-
energetic acceleration, it is timely to address, among various 
other issues, the scalability to different laser and plasma 
parameters.  The choice of photon kinetic theory3) for 
developing the scaling laws is motivated by its simplicity and 
the useful analogies between laser pulses and electron beams 
interacting with plasma due to the phase space representation of 
the electromagnetic field4).  The results presented in this paper 
are preliminary in the sense that only the laser pulse evolution is 
considered, not the electron acceleration.  Also, we are planning 
to extend the model to three-dimensional geometry. 

Basic equations 
It is well known that the description of laser propagation in 
underdense plasma can be simplified5) by exploiting the 
disparity between the ‘fast’ timescale of the optical frequency 
ω0 and the ‘slow’ timescale of the plasma response with 
characteristic plasma frequency ωp « ω0.  Here, ωp

2 = 4πe2np/m 
and np denotes the background plasma density.  On the optical 
timescale, the plasma response is given by the electron quiver 
motion, a rapid transverse oscillation in the laser electric field.  
On the plasma timescale, the laser ponderomotive force due to 
the light pressure can induce charge separation and excite a 
trailing plasma wave or wakefield.  To describe this wakefield, 
the quasi-static approximation can be used if the laser pulse 
envelope evolves slowly in the co-moving frame, with a 
characteristic frequency ωe « ωp, which we will define later.  
Within the quasi-static approximation, plasma quantities depend 
on time only through the co-moving coordinate ζ = (z-v0t)/c, 
where v0 denotes the linear group velocity c(1-ωp

2/ω0
2)1/2.  In 

this paper, we adopt the widely used relativistic cold electron 
fluid model6) for the plasma, which results in a single equation 
for the dimensionless electrostatic potential φ = eΦ/mc2 
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where a = eA/mc2 denotes the dimensionless envelope of the 
vector potential A that describes the laser pulse.  All plasma 
quantities can be expressed in terms φ of and a, for example the 
Lorentz factor of plasma electrons  
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and the local plasma frequency Ωp, which includes relativistic 
and ponderomotive contributions 
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The laser pulse is modelled with photon kinetic theory3), i.e. a 
representation of the electromagnetic field in terms of classical 
particles (quasiphotons) with time and frequency coordinates, 
which obey the ray-tracing equations  
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Here, ω denotes the quasiphoton frequency, and k its wave 
number, which is determined from the local dispersion relation 
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The idea behind photon kinetic theory is that a laser pulse can 
be represented as a distribution fp(ζ,k,t) of quasiphotons, with 
the ζ-dependence describing the temporal structure of the pulse 
and the k-dependence containing spectral information.  For 
example, a laser pulse with frequency chirp would be modelled 
as a distribution of quasiphotons with a correlation between ζ 
and k7).  The distribution function is used to calculate the vector 
potential envelope as follows 
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The laser pulse evolution follows from a Vlasov equation, i.e. 
the quasiphoton distribution is transported in phase space along 
the ray-tracing trajectories given by (4).  Formally, the Vlasov 
equation follows from Maxwell's equation in the limit ω » Ωp, 
i.e. for a plasma response that is slow compared to the laser 
pulse frequency.  The advantage of the photon kinetic method is 
that the laser pulse dynamics can be tracked on the slowest 
timescale 1/ωe.  The disadvantage is that phase information is 
lost, which excludes a particular class of laser-plasma 
interactions, e.g. Raman backward scattering. 

Scaling laws 
Equations (1) and (4) can be used to derive scaling laws in two 
different limits, namely the linear (a0 « 1) and nonlinear (a0  » 1) 
regimes.  The scaling laws are found by rewriting the variables 
in terms of scaling parameters (ω0, ωp and a0) and scaled 
variables (I, G, s, ψ, τ).  In the linear regime, one may assume 
that |φ| « 1, so the wakefield equation simplifies to 
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Clearly, the plasma response scales linearly with the amplitude 
of |a|2, so that we rewrite this quantity as |a|2 = a0

2I.  In the 
same way, we write φ = a0

2ψ.  From (7) it is also obvious that ζ 
scales with the plasma period, so we rewrite it as ζ = s/ωp.  
Thus we find  
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which is seen to contain only scaled variables (I, s, ψ).  In the 
linear regime, the scaling for frequency turns out to be  
ω2 = ω0

2(1+a0G).  This can be shown by rewriting the equations 
of motion as 
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Here we have assumed that both ck/ω and v0/c are close to 1, 
and also that |a0

2ψ| « |a0G| « 1.  In terms of an invariant time 
variable τ = ωet with ωe = a0ωp

3/ω0
2, Equations (9)-(10) take on 

the simple form 
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which, like (8), is seen to contain only scaled variables.  Thus 
scaling in the linear regime is seen to work as follows: 
essentially the same physics is found if the laser pulse duration 
is scaled proportional to the plasma period (i.e. to np

-1/2), and the 
interaction time proportional to 1/ωe (i.e. to np

-3/2).  The laser 
pulse duration scales independent of the pulse amplitude, while 
the interaction time increases with decreasing pulse amplitude 
as 1/a0.  

In the nonlinear regime, we approximate the wakefield equation 
with 
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so that different scalings φ = ψ, ζ = s/(a0ωp) are seen to hold for 
the coordinate and the potential.  In terms of scaled variables, 
the wakefield equation becomes 
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The invariant timescale τ = ωet with ωe = a0ωp
3/ω0

2 is the same 
as in the linear regime, but a different scaling ω2 = ω0

2(1+G) 
holds for the photon frequency, so that 
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are the equations of motion in scaled variables.  In the nonlinear 
regime, the same physics is found if the laser pulse duration is 
scaled proportional to the plasma period and proportional to 
1/a0, which corresponds to shorter pulses at higher pulse 
amplitude (in such a way that the pulse energy scales inversely 
proportional to the pulse duration).  

Simulation results 
To check our scaling laws numerically, simulations with a one-
dimensional particle-in-cell code have been performed.  This 
recently developed code has a gridless electrostatic field solver 
and uses a Green's function approach to solve the wave 
equation.  The advantage of this implementation is that the code 
is less susceptible to numerical noise than more conventional 
particle-in-cell codes that use finite-difference time domain 
(FDTD) solvers8) for all electromagnetic field components.  
Especially for the electrostatic field, interpolation from the grid 
to the particle positions is known to produce numerical heating, 
which may result in unphysical particle trapping9).  

The initial shape of the laser pulse is taken to be Gaussian  
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where T denotes the laser pulse duration.  In our simulations, 
we have chosen short pulses (ωpT ≤ 2) that drive high-
amplitude wakefields.  The evolution of such pulses has been 
described before10, 11), and can be summarized as follows.  As 
the number of photons in the pulse is conserved, the pulse loses 
energy to the wake by photon redshifting, i.e. a drop in 
frequency.  This photon redshifting is analogous to the energy 

loss of electrons in a short bunch that drives a wakefield: 
photons lose energy in regions where the electrostatic field is 
decelerating.  Due to the drop in frequency, the amplitude of the 
vector potential (6) increases and the wakefield amplitude 
increases as well - see Equation (1).  The feedback from the 
wakefield to the laser pulse leads to an explosive instability, as 
the increase of wakefield amplitude speeds up the photon 
energy loss.  As the electrostatic field varies with ζ, the 
frequency drop is non-uniform over the length of the pulse: this 
causes an increase of pulse bandwidth, which may lead to 
steepening of the |a|2-profile and strong pulse compression.  
Ultimately, as the pulse bandwidth becomes very large, the 
explosive instability is saturated by group velocity dispersion, 
which causes an increase of the pulse length and a decrease of 
pulse amplitude.   

For the first set of simulations, we have chosen a0 = 1, ωpT = 2 
and different values (5, 10, 15, 20) of ω0/ωp to check the scaling 
with density in the linear regime.  In Figure 1 we show 
snapshots of |a|2 at τ = 4.  Clearly visible are the steepening of  
the |a|2-profile and strong pulse compression, especially for the 
higher values of ω0/ωp.  In Figure 2 we plot the evolution of 
am

2, i.e.  the maximum of |a|2, for the different values of ω0/ωp.  
This plot shows increase and subsequent decrease of am

2, as 
expected from the growth and saturation of the explosive 
instability.  For τ ≤ 1 the evolution of am

2 is identical for all 
values of ω0/ωp, indicating that the dynamics is completely 
scale-invariant.  At later times the scale invariance becomes 
incomplete, as the evolution of am

2 is found to be different for 
the different values of ω0/ωp, probably due to breakdown of one 
or more of the assumptions that underlie Equation (11).  
However, the maximum of am

2 is always found around τ = 4, 
indicating that the dynamics, although not identical, is similar 
in all cases, with a similarity timescale given by ωe = a0ωp

3/ω0
2. 
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Figure 1. Density scaling in linear regime.  Snapshots of |a|2 at 
τ = 4 for a0 = 1, ωpT = 2 and ω0/ωp = 20 (blue); 15 (green); 
10 (red); 5 (black).  For reference, the initial distribution of |a|2 
is shown with a dashed black line. 
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Figure 2. Density scaling in linear regime.  Evolution of peak 
value am

2 of |a|2 for a0 = 1, ωpT = 2 and ω0/ωp = 20 (blue); 
15 (green); 10 (red); 5 (black). 



 

Central Laser Facility Annual Report 2004/2005 89

High Power Laser Programme –  Theory and Computation 

The purpose of the second and third set of simulations is to 
check the scaling with amplitude in the linear and nonlinear 
regime, respectively.  Snapshots of |a|2 are shown in Figures 3 
and 5, while Figures 4 and 6 contain the evolution of am

2.  The 
results are basically the same as for the first set of simulations, 
and they confirm the scaling of time with 1/ωe.  For small 
values of the invariant time τ = ωet, a complete scale invariance 
is found.  At larger values of τ, the scale invariance becomes 
incomplete, and the evolution of scaled quantities is not 
identical, but similar. 
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Figure 3. Amplitude scaling in linear regime.  Snapshots of |a|2 
at τ = 4 for ω0/ωp = 10, ωpT = 2 and a0

2 = 1 (blue); a0
2 = 3/4 

(green); a0
2 = 1/2 (red); a0

2 = 1/4 (black).  For reference, the 
initial distribution of |a|2 is shown with a dashed black line.   
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Figure 4. Amplitude scaling in linear regime.  Evolution of 
peak value am

2 of |a|2 for ω0/ωp = 10, ωpT = 2 and a0
2 = 1 (blue); 

a0
2 = 3/4 (green); a0

2 = 1/2 (red); a0
2 = 1/4 (black). 
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Figure 5. Amplitude scaling in nonlinear regime.  Snapshots of 
|a|2 at τ = 3.5 for ω0/ωp = 40 and  a0 = 2, ωpT = 1 (blue); a0 = 4, 
ωpT = 1/2 (green); a0 = 6, ωpT = 1/3 (red); a0 = 8, ωpT = 1/4 
(black).  For reference, the initial distribution of |a|2 is shown 
with a dashed black line.  
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Figure 6. Amplitude scaling in nonlinear regime.  Evolution of 
peak value am

2 of |a|2 for a0 = 2, ωpT = 1 (blue); a0 = 4,  
ωpT = 1/2 (green); a0 = 6, ωpT = 1/3 (red); a0 = 8, ωpT = 1/4 
(black). 

Conclusion 
In this paper we have studied scale invariance in the interaction 
of short laser pulses with underdense plasma in one-
dimensional geometry, analytically with photon kinetic theory 
and numerically with particle-in-cell simulations.  The 
simulation results confirm the analytic scaling of the interaction 
time with laser pulse amplitude and plasma density, namely 
proportional to 1/ωe with  ωe = a0ωp

3/ω0
2.  For small values of 

ωet, the dynamics is found to be completely scale-invariant, 
while at larger values of ωet the dynamics is still qualitatively 
comparable.  This work is the first application of photon kinetic 
theory to the derivation of scaling laws: in future work, we plan 
include three-dimensional effects. 
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