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Introduction
It is very common in plasma physics, particularly in
plasmas of moderately high atomic number for the average
charge state <Z> = ne/ni to be somewhat less than the
nuclear charge Znuc. For instance Neon is only fully
ionised for temperatures of more than 500eV or so and
Xenon is only fully ionised above around 50keV. It is
usual to distinguish between Znuc and <Z> in the
description of the plasma but much less common [1,2] to
recognise that plasmas contain ions of many different
charge states which each have different dynamics and
collision frequencies.

In reality any one ion will not have a constant charge state
but its charge will fluctuate as a result of ionisation and
recombination events and each charge state will have
slightly different dynamics in the plasma electromagnetic
fields. In many ways the charge fluctuations are analogous
to the electron-ion collisions that result in inverse
bremsstrahlung absorption of electromagnetic wave energy
by electrons. If the electrons are initially hotter than the
ions or there is an external energy source driving plasma
waves then it is possible for the ions to steadily gain energy
as a result of the random changes of charge state.

Somewhat similar effects occur in dusty plasmas [3] where
the electric charge on dust particles fluctuates, energy is
not always conserved since the Hamiltonian H = p2/2M +
ZeΦ is time dependent through the fluctuations of Z.

Motion in an Ion-acoustic wave
We consider an idealised case where the plasma ions of
mass M may exist in two charge states Z1 and Z2 (Z2 > Z1)
and for simplicity we consider that the ionisation rate νion
from Z1 to Z2 is the same as the recombination rate νrec
from Z2 to Z1 so that the equilibrium densities of Z1 and
Z2 are equal. We also define ν = νion/2 = νrec/2 which is
the rate for a complete cycle of ionisation and
recombination.

Consider the motion of the ion in charge state Z1 in a
monochromatic ion acoustic wave described by its
longitudinal electric field E = E0 cos(ωt - kx). Since the
wave is longitudinal and assumed to be small amplitude
then the density fluctuation is (δn/n) = vo/vph where vo =
Z1eE0/Mω is the oscillation velocity and vph = ω/k =
(Z1kBTe/M)1/2 is the ion acoustic speed, kB being
Boltzmann’s constant. Initially the ion oscillation is
around the point x = 0 and has no net drift so that

v = (Z1eE0/Mω) sin(ωt).

We now consider what happens when the ion of charge
state Z1 is ionised to charge state Z2 at some phase φ1 of
the electric field. Ionisation generally occurs either via
electron impact or by photoionisation and in either case
there is little change in the ion momentum. So immediately
after the ionisation event we may write the ion velocity as

v = (Z2eE0/Mω) sin ωt + (Z1 - Z2)(eE0/Mω) sin φ1

The first term corresponds to the oscillatory motion in the
new charge state and the second to an average drift
velocity. If the ion of charge Z2 now recombines with an
electron at phase φ2 to produce an ion of charge Z1 again
with little change in the ion momentum then the drift
velocity after one ionisation - recombination cycle is

vD = (Z1 - Z2)(eEo/Mω)sinφ1 + (Z2-Z1)(eE/Mω) sin φ2

The velocity increments do not cancel out since they occur
at different phases of the wave. We rewrite this last
equation as            

(1)

where φ = (φ1 + φ2)/2 and δφ = φ1 - φ2

After many uncorrelated cycles of this process the drift
velocity will perform a random walk so that the
expectation value of the energy increases linearly with
time.

The absolute phase φ is random so <cos2φ> = 1/2 and we
evaluate the term in δφ = ωτ by taking the time delay τ
between ionisation and recombination to be exponentially
distributed so that we need to evaluate 

giving our final result for the rate of increase of ion energy

(2)

For small values of ν/ω the heating rate is proportional to
ν while for ν >> ω the heating rate falls as ν-1 since the
successive ionisation and recombination events are strongly
correlated. This calculation is strictly valid only for small
ion wave amplitudes (vo/vph) = (δn/n) << 1 since we
assume that the ionisation and recombination rates are
independent of the phase of the waves [4].

Motion In a Static Potential Well
We consider the motion of an ion initially of charge Z1 in
a potential well eΦ = ax2 with x = x1 sinωt and initial
energy E1 = Z1ax1

2. If the ion changes its charge state to
Z2 at phase φ1 with no change in momentum then the new
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3
energy is E2 = E1 + (Z2 - Z1)ax1

2sin2φ1. The frequency and
phase of the oscillation in the new charge state are
different to their previous values and the exact algebra
becomes lengthy. If we restrict the analysis to ionisation
and recombination rates smaller than the oscillation period
we can assume all phases to be randomly distributed and
neglect the phase change at ionisation and recombination.
If the ion now returns to charge Z1 at phase φ2 of its new
oscillation and its new energy is E3, then we find

so that with randomly distributed φ1 and φ2:

This is an exponential increase of the mean energy with
each ionisation recombination cycle. It is possible because
the motion of a particle with time dependent charge
corresponds to a time dependent Hamiltonian and energy
is in general not conserved. Truly electrostatic structures
in plasmas are rare but the late stage evolution of many
plasma instabilities such as the two stream instability gives
rise to long lived density structures. In most cases the
density structures correspond to the expulsion of electrons
by the ponderomotive force associated with wave energy
and so do not provide confining potentials for the ions.
Quasi resonant particles in a wave see an almost static
potential and will experience this exponential growth in
energy until they are shifted away from resonance.

Electron Ion Equilibration
Normally electron ion temperature equilibration proceeds
via the mechanism of screened binary collisions giving the
Spitzer rate for Te >> Ti

where µ = M/mp and mp is the proton mass

The process is slower than other collision rates because the
large electron ion mass ratio gives only a small energy
transfer in each collision.

If ZTe >> Ti the thermal plasma will have an equilibrium
excitation of ion-acoustic waves with dispersion relation
ωia = kcs. The energy in the ion-acoustic modes is
calculated by a procedure analogous to the simple
derivation of the ratio of kinetic to electrostatic energy in
the Langmuir oscillation of electrons.

If the plasma is considered to be in a box of side L then
modes exist for k = 2πN/L and the maximum value of k is
given by the Landau damping limit kcs = ωpi where 
ωpi

2 = 4πniZ
2e2/M. The energy driving the ion waves is

due to the electron thermal energy so we now ascribe an
energy of kBTe to each ion mode giving after a little
manipulation exactly the same result as for the Langmuir
modes:

(Electron Kinetic Energy / Ion Acoustic wave energy) =
neλD

3 where λD is the electron Debye length

It is only when plasmas become non-ideal (few particles
per Debye sphere) that there is significant energy in the
electrostatic modes. To use this result with (2) we need an
expression for the average oscillatory velocity of the ion-
acoustic modes and we note that for a mode of
wavenumber k, vosc

2 ~ k-2 while the density of modes ~k2

so that the mean square oscillation velocity is

M<vosc
2> = ZkBTe / (neλD

3) or <vosc
2> / cs

2 = 1 / (neλD
3)

Using very approximate ionisation rates [5] we find that for
strongly coupled plasmas of high Z, around solid density
and at temperatures of hundreds of eV the ionisation
heating can be important but it is in a regime where the
Spitzer theory is already of limited applicability.

Conclusion
The ion dynamics driven by stochastic changes of ion
charge lead to a novel ion heating mechanism which may
need to be included in the analysis of some high Z plasma
experiments. The simple model presented here would need
to be extended for very large amplitude waves where
ionisation and recombination rates may change with the
density (and in some cases temperature) changes
associated with the waves. Also a more general treatment
would allow for a wider distribution of simultaneous ion
charge states.
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