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Introduction
Current interest in direct and indirect drive inertial
confinement fusion (ICF) has emphasized the value of
studying long-pulse laser-plasma interactions. Importantly
such physics involves a significant departure from Braginskii
transport theory [1]. We are currently interested in the
development of the computational tools to study such a
demanding theoretical situation; one which requires correct
treatment of electron kinetics in the presence of a moving
ion background. There is no kinetic code available today
which can do this over the requisite nanosecond timescale
including the effects of collisions and magnetic fields. In the
regime of interest ion non-local effects are unimportant,
thus one may treat them as a fluid. As a result we have
developed a hybrid kinetic-hydrodynamic code. This treats
the electrons kinetically using the code IMPACT [2] (Implicit
Magnetized Plasma and Collisional Transport); we have
coupled hydrodynamic ion motion to this. The resulting
code allows nanosecond laser-plasma simulation in two
spatial (three velocity) dimensions, including the effects of
self-consistent magnetic fields and ion motion.

The Model
We solve the Vlasov-Fokker-Planck (VFP) equation for the
electrons, i.e.:

(1)

The distribution function is represented by f(v,r,t), the
macroscopic electric and magnetic fields are given by E
and B respectively. If we are to include ion motion in our
model we need to transform equation (1) into the average
rest frame of the ions – i.e. the frame moving at the local
ion fluid velocity. We define this velocity as C – a function
of position and time. We use w to represent the electron’s
velocity coordinate to distinguish it from v; they are related
by v = w + C(r,t). Performing this transformation yields:

In the above equation the electric and magnetic fields are
normalized (a = – eE/me, ω = – eB/me). Further progress
is made by expanding the distribution function in terms of
the Cartesian tensors [3]:

(3)     

Figure 1. The angular distribution – in velocity space – of
the first four cartesian tensors. From left to right: f0, f1z, f1y,
f1x. Red represents an additive contribution to the
distribution function, blue a subtractive.

We truncate the expansion after two terms – this is known
as the ‘diffusive’ approximation. The expansion allows us
to reduce the number of dimensions in the problem from
five to three; the angular variation of the distribution
function in velocity space is prescribed by the cartesian
tensors (as shown if figure 1). The components f0 and f1
are thus functions of the magnitude of the velocity only.
Reducing the dimensionality of the problem allows one to
solve it with a reasonable supply of computational
resources. Substitution of equation (3) into equation (2)
results in two coupled equations for f0 and f1.

We can see that the transformation makes the Vlasov part
of the VFP equation considerably more complicated!
Such an increase in difficulty is, however, preferable to a
redefinition of the collision operators – Coulomb
collisions of electrons with ions are naturally defined in the
ion’s rest-frame. In equations (5) and (6) νei and νee are
the electron-electron and electron-ion collision frequencies
respectively.
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The terms marked À – Å in equations (4) and (5) are the
correction terms we add to IMPACT to include the effects
of ion motion. We can understand their significance by
examining their form and velocity moments. Terms À and
Ã are the convective derivatives due to the motion of fo and
f1 at the ion velocity; term Á gives compressional heating
of the isotropic part of the distribution function due to ion
fluid flow. We expect such heating to only appear in the fo
equation as this controls the temperature of the plasma
(through its w2 ‘energy’ moment). When we transform the
coordinate system to one moving with the ions we are no
longer in an inertial reference frame. As such we must
include the effects of fictitious forces – these are represented
by the terms in Â and Ä. The terms labeled Å represent
the bulk flow of momentum due to the average ion velocity.

The ions are modelled as a cold magneto-fluid. As such it
is only their momentum equation which is important.
When we strictly enforce quasi-neutrality and ignore
displacement current effects – appropriate over timescales
much longer than the plasma period – and also ignore
electron inertia we derive their equation of motion.

(6)

Note that, as the ions are cold, it is electron pressure (Pe)
and magnetic pressure that drive their flow.

Solution of equations (4) – (6) is now required. After
writing them in finite difference form we eliminate f1
between equations (4) and (5) [2]. Terms À – Å are treated
explicitly; the electric field and f0 in the remaining terms
are treated implicitly. Thus we form a matrix equation
that we solve iteratively. Explicit numerical solution of
Faraday’s Law yields the magnetic field.

Simulation Results
We have used IMPACT (with no ion motion) to simulate
experiments investigating non-local heat transport in a gas-
jet laser-produced plasma. Several important experiments
of this type have been performed at the Janus laser facility
at Lawrence Livermore National Laboratory (LLNL). A
schematic of the ‘classic’ example of such an experiment is
shown in figure 2 [4]. Recently this work has been extended

by the inclusion of a large magnet around the plasma
producing a magnetic field in the z-direction as indicated [5].
This has been observed to suppress the effects of non-local
heat transport – as shown in figure 3. We have attempted
to observe a similar effect using IMPACT.

Figure 3. Temperature profiles measured after 1ns in the
latest Janus experiment. The values of the externally applied
B-field are given – note the pre-heated ‘shoulders’ in the
unmagnetized plasma (figure courtesy of D.H. Froula et al.).

Figure 4. The temperature profiles observed in VFP
simulation of non-local laser heating after 500 electron-ion
collision times. The blue line has an externally applied
magnetization of 133, the red line of 1.33. The laser spot is
centered at (0,0).

Simulations of a circular laser spot with small and large
externally applied magnetic fields were performed
(magnetizations – ωτ = 1.33 and ωτ = 133). We give the
temperature profiles of such simulations after 500 electron-
ion collision times in figure 4. The interesting feature here
is the ‘kink’ in the temperature profile for low applied
magnetic field. This does not appear to be consistent with
fast, relatively collisionless, electrons streaming down the
temperature gradient and pre-heating the plasma (as
observed experimentally). Instead it seems that the
magnetic field is inhibiting heat flow in the ‘kinked’ region.
Figure 5 shows us that the region in which the magnetic
field is largest corresponds to that in which the
temperature gradient is steepest (the ‘kink’) – supporting
this idea. We see that in the highly magnetized case 
ωτ = 133) the heat flow is strongly suppressed and the
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Figure 2. A schematic of experiments at LLNL using the
Janus laser to investigate the effects of non-local heat
transport in plasmas.
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‘kink’ disappears. Further analysis is required along with
a simulation with no externally applied B-field; in such a
simulation we expect to see the effects of non-local
electrons pre-heating the plasma.

Figure 5. Magnetic field profiles after laser heating for 500
electron-ion collision times. The red line shows the
simulation performed with an externally applied
magnetization of 1.33, the blue line with 133. The laser spot
is centered at (0,0).

We have also simulated a similar problem with ion-motion
included. Here we apply a large-amplitude Gaussian
temperature perturbation – with a magnitude of 0.8 times
the background temperature – and watch it relax.
Although the results are at a very preliminary stage, we
have observed significant density modulations and
qualitative differences in the magnetic field structure
(compared to the case with no ion-motion). These are
shown in figures 6 and 7. We see that the magnetic field is
advected with the plasma; the magnetic Reynolds number
is 3.8×104 so we expect advection of the magnetic field to
dominate over its diffusion. The effect of ion-motion on
the temperature profile remains to be elucidated.

We see the difference ion-motion makes to the magnetic
field by comparison of figures 5 and 7. In figure 7 we see
that the magnetic field has a minimum at the centre of the
laser spot. This is not true of the case without ion-motion
shown in figure 5. We believe that this is due to the
magnetic field being moved by different processes with and
without plasma motion. We postulate that the Nernst

effect is dominant in the case where the ions are stationary
whereas when the plasma moves convection of the B-field
with the fluid flow is most important. This needs to be
examined analytically.

Further Work
The results in figures 4 – 7 are by no means conclusive.
The temperature profile in figure 4 differs qualitatively
from that observed experimentally. We need to run
simulations with no externally applied magnetic field for a
more direct comparison. The low temperature of the
background gas jet meant that – for ease of computation –
we performed these preliminary simulations using rather
arbitrary parameters that did not match those of the
experiment. We used a higher background temperature
and assumed the nitrogen was fully ionized from the
outset. This should be addressed. We need to further
analyse the simulations with ion-motion included – over
the nanosecond timescales of interest we have shown that
the bulk flow of the plasma is important. It would clearly
be of interest to vary the range of magnetic fields
externally applied to the plasma and observe the required
value of the B-field for non-local heat flow suppression to
occur with and without ion-motion.
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