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Introduction
Stimulated Raman scatter of energy from a long pump
pulse into a short seed pulse at a slightly lower frequency
has been suggested as a means of producing very intense
short pulses in a way which circumvents the need for large
and expensive gratings [1-3]. In the linear regime, the
Langmuir waves left behind the pulse interact with the
pump and the result is a broad pulse, filling the entire
region between its starting point and its leading edge. The
peak lies approximately in the middle of this region, and
so moves at a speed of around c/2. However, Malkin et
al.[2] have shown that there is a nonlinear solution of the
appropriate equations representing a self-similar pulse.
The amplitude of this is proportional to the distance
travelled while the width is inversely proportional to the
distance travelled. The energy of the pulse thus increases
linearly with distance travelled and energy is fed into it
from the pump at a constant rate. The pump is totally
depleted by the pulse, so there is no downstream
excitation. Recently Ersfeld and Jaroszynski [4] have shown
that similar scaling (superradiance) can be obtained in the
linear regime if the pump frequency is appropriately
chirped. In this case the frequency mismatch downstream
inhibits the growth of the pulse. Our purpose here to
show that these various regimes can be brought together
within a unified description, so that the transition from
linear to nonlinear behaviour can be studied as well as the
combined effects of nonlinearity and a chirped pulse. We
also present some preliminary results showing how the
self-similar solution outlined in the first part of this paper
is related to more general solutions.

The self-similar solution
Raman scattering is a three wave interaction process in
which the highest frequency wave, the pump, gives energy
to a lower frequency pulse and a Langmuir wave. We
treat a simple one dimensional system for which the
equations describing the evolution of the pulse, the pump
and the Langmuir wave amplitudes can be written in the
familiar form

(1)

with a, b, n the pulse, pump and Langmuir wave
amplitudes respectively. The scaling is such that frequency
times amplitude squared is proportional to the wave
energy density, time is in units of the inverse linear growth

rate based on the initial pump amplitude and velocity is
scaled to c. We assume a very underdense plasma in which
the group velocity of both transverse waves can be taken
as c. In order to introduce frequency chirp into the pump,
we follow Ersfeld and Jaroszynski [4] and assume that

(2) 

with B(z,t) a slowly varying function of its arguments.
Guided by the linear theory we make the changes of
variable 

to obtain

(3)

and look for a solution of the form 

(4)

with ζ = z(t – z). The set of equations (3) then becomes 

(5)

The first two of these give equations in the variable ζ, but
the third is not in this form. Now, however we can follow
the procedure of Malkin et al. [2] and note that if the pulse
is short then H’ is only non-zero when z ≈ t, so that we can
approximate our equations by

(6)

a set of ordinary differential equations in ζ. This solution
is, of course, a rather special solution of the set of
equations (3), which will have a wide variety of solutions
for different initial conditions. The question of what
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initial condition produces this solution can be answered
using Laplace transform techniques to analyse the linear
regime. We put B = 1 and take the Laplace transform with
respect to time of the first two equations in (3). The initial
condition is be taken to be 

(7)

corresponding to a very short initial seed pulse and a
quiescent plasma with no Langmuir wave present. The
solution for z ≥ 0 is then found to be 

(8)

where C is the usual Bromwich contour, parallel to the
imaginary axis and to the left of all singularities of the
integrand. As it stands, this integral is divergent, the
reason being that it contains the initial δ-function. If the
integral representation of this is subtracted, then we obtain
a convergent integral. Equation (8) and the associated
solution for N are of the form given in (4), so we conclude
that the similarity solution is generated by the initial
conditions (7).

The only parameter in (6) is the chirp rate (normalised to
the square of the linear growth rate in the scaling we use).
If it is put equal to zero we get the solution of Malkin et
al., except that their similarity variable is t(z – t). This
makes little difference when the pulse is localised around 
z = t, but our solution connects smoothly to an exact
solution in the linear regime, when the pulse initially
broadens. It also goes into the linear solution with a chirp,
and so brings the linear and nonlinear regimes, with or
without a chirp, into a unified theory.

Figure 1. The amplitudes of F, G, H (blue, red, green
respectively) with no chirp. Asymptotically, G and H (giving
the pulse and pump amplitudes) tend to zero, while F tends
to √2.

The solution of the set of equations (6) with no chirp is
illustrated in Fig. 1. In order to get a non-zero solution we
need to take a non-zero initial value of the pulse.
However, since there is rapid exponential growth initially,
the exact value chosen does not strongly affect the
solution. After a time t, the region of ζ which is of interest
is in the range [0, t2/4]. For small times this lies within the
initial region of growth and we obtain a smooth pulse
whose maximum lies close to z = t/2. At later times we

enter the region with oscillations and the behaviour of the
pulse is as in the solution of Malkin et al., ie a main pulse
whose amplitude increases proportional to time and width
varies inversely with time, followed by a train of pulses of
decaying amplitude. The effect of a chirp is to produce
incomplete depletion  of the pulse and a resultant
reduction in  the pulse amplitude as shown in Fig.2. In the
linear regime the solution, as in Fig.3, behaves in a
qualitatively similar way if a chirp is present, but unless
the chirp is large enough, neglect of the pump depletion
leads to pulse and Langmuir wave amplitudes which are
too large. Pulse amplitudes corresponding to these
solutions are shown in Fig.4.

Figure 2. As Fig. 1, but with a chirp of 0.1. Note the
incomplete depletion of the pulse.

Figure 3. The linear solution with a chirp of 0.1. The value
of H is fixed at 1. The behaviour of F and G is qualitatively
similar to the nonlinear solutions, but the amplitudes are far
too high.

Only if the chirp parameter goes above about 0.2 does the
pump depletion become negligible as illustrated in Fig.5.
This is, of course, a regime in which there is little transfer
of energy from the pump to the pulse. However, a strong
chirp may well allow experimental demonstration of the
superradiant scaling in circumstances where the available
combination of pump intensity and plasma length does
not allow access to the nonlinear regime. Also, since
chirped pumps are generally what is available, the effect of
the chirp on the amplification process is important. As
can be seen by comparing the top two plots in Fig.4, an
important effect is to reduce the pulse amplitude.

Solution with a more general initial condition
As pointed out above, the similarity solution here
corresponds to growth from a small δ function seed. In
order to see the effect of a finite width initial seed, we
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return to the initial equations and change the spatial
variable to ξ = z – t, so that we are in a frame moving with
the pulse. So far we have looked at this problem in the
absence of a chirp, in which case we obtain

(9)

Then, essentially following the procedure of Malkin et al.,
we assume that the Langmuir wave and the pump do not
change significantly in the time it takes the pulse to pass a
given point, allowing us to drop the time derivative in the
last two equations. We can then assume all the variables to
be real and take

(10)

with u = u(x,t) obeying 

(11)

The appropriate initial condition is that u=0 upstream, so
we have 

(12)

and also

(13)

For a given initial a we can use (12) to find u (infinity for
the present purposes being the upstream edge of the
pulse), then (13) to update the value of a to the next time
step. This gives a very simple and quick algorithm to
determine the evolution of the pulse.

Figure 6. Evolution of a pulse. The top row shows the time
evolution from a one-dimensional particle-in-cell code, while
the bottom row shows the corresponding results for the pulse
amplitude from the analytic approximation. The initial
pulse is  shown in the bottom set of graphs.

In Fig. 6 we show typical behaviour, comparing the
analytic results with one-dimensional PiC simulations of
the same system. Clearly the qualitative behaviour is
similar and if the normalised units of the analytic results
are translated into the units of the simulation there is also
reasonable agreement in the pulse width and amplitude. It
is evident that the behaviour seems to be evolving towards
the self-similar solution described in the first part of this
paper. That this is to be expected can be seen by noting
that the pulse amplitude at any point can only depend on
the initial value of the pulse amplitude upstream of this
point (in a frame moving with the pulse). As the seed
pulse evolves the most important feature becomes the
narrow leading pulse in a train of pulses of decaying
amplitude. As this leading pulse becomes shorter, it
depends on an increasingly narrow region at the leading
edge of the initial pulse and so the solution with an initial
δ-function would be expected to become a good
description of it.

Conclusions
We have brought together previous similarity solutions
predicting superradiant scaling of a short pulse amplified
by Raman scattering via a long counter-propagating pump.
A single set of equations can describe the evolution of the
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Figure 4. The pulses at t=25. Top - nonlinear, no chirp;
middle- nonlinear, chirp 0.1; bottom - linear, chirp 0.1.

Figure 5. The nonlinear solution with a chirp of 0.2. Now
there is little pump depletion and the solution is very close to
the linear solution.
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system in the linear and nonlinear regimes with or without
a frequency chirp on the pulse. This brings together
regimes treated separately in previous work and lets us see
how as the chirp rate increases we go from a system
dominated by nonlinearity into a linear regime dominated
by the chirp. We have also presented both approximate
analytical and simulation results to suggest that any initial
pulse will eventually evolve so as to behave like the
similarity solution, at least at its leading edge.
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