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Introduction
It was shown by Dawson [1] that wave breaking in a cold
plasma occurs when elements of the plasma electron fluid
that started out in different positions overtake each other
while moving back and forth during the passage of the
wave. For both non-relativistic and relativistic plasmas, this
overtaking happens when the peak fluid velocity equals the
phase speed of the plasma wave [1,2]. A direct consequence
of this is that a large fraction of the plasma electrons get
trapped in and accelerated by the plasma wave.

Adapting this definition for use with warm plasmas is by
no means straightforward. Although it is generally
accepted that wave breaking implies the trapping of
background plasma electrons [3], it has been observed by
several authors that electron trapping in itself does not
imply wave breaking [4,5]. The reason for this is that in a
thermal plasma there is always a small fraction of the
electron population attaining speeds larger than the phase
speed of the plasma wave under consideration. Such
electrons will of course get trapped sooner or later, so if
wave breaking were equated to background electron
trapping, every longitudinal plasma wave, regardless of
phase speed or amplitude, would always be broken.

In practice, plasma waves can support small numbers of
trapped electrons without losing their wave structure.
These trapped particles may cause the wave to be Landau-
damped, but as long as the wave structure remains intact,
the wave cannot be considered broken. This is well
visualized, for example, by Bergmann and Mulser [5], as well
as in simulations [6] and experiments [7] of self-injected
mono-energetic electron bunches in the “bubble regime’’.
In their paper, Bergmann and Mulser present the results of
Vlasov simulations showing that when a small fraction of
the plasma electrons gets trapped, the periodic wave
structure is unaffected, while in the case that a large
fraction gets trapped, the periodic structure collapses and
disappears. In this context, wave breaking is defined as
“the loss of periodicity in at least one of the
macroscopically observable quantities.’’ In terms of
particle trapping, this condition is satisfied if a
considerable fraction of the plasma electrons are trapped,
not just the fastest ones.

In order to quantify this definition, the electron sound
speed s0 = (3kT0/me)

1/2 and associated momentum 
p0 = (3kT0me)

1/2 are introduced, where T0 denotes the
plasma temperature before the arrival of the wave. Since
Langmuir waves in an electron plasma always have a phase
speed larger than s0, it follows that electrons with initial
speed |v| ≤ s0 will contribute fully to the collective
oscillations that define the wave, while electrons with initial
speed |v| > s0 will always be faster than some of the
Fourier components of the Langmuir wave and will thus
not contribute fully to its oscillations. Wave breaking is
then defined as the trapping (by the wave) of background

plasma electrons having an initial forward momentum not
larger than p0. In other words, a wave will break if not only
electrons from the “tail’’ of the distribution are trapped,
but also electrons originating from the “body’’ of the
distribution. When that happens, the wave will disrupt the
collective electron oscillations that drive it in the first
place, and will eventually collapse and lose its structure.

In practice, however, a number of less straightforward and
often conflicting definitions for wave breaking in a warm
plasma are used. All these definitions are based on the 1-D
Vlasov equation for electrons, to which the quasi-static
approximation is applied, i.e. every quantity is assumed to
be a function of ξ=x-vϕt only, where vϕ denotes the phase
speed of the wave. Any solutions to the quasi-static Vlasov
equation will break down as soon as the quasi-static
assumption is violated, i.e. as soon as large-scale particle
trapping starts. In that light it makes sense to equate the
breakdown of the quasi-static Vlasov model to wave
breaking. Unfortunately, most papers on wave breaking
simplify the Vlasov model to a quasi-static warm-fluid
model, and equate wave breaking to breakdown of that
fluid model, sometimes referred to as Coffey’s criterion.
This is where things go wrong: many different warm-fluid
models can be found in literature [3,8-14], but quite a few of
them don’t break down at the same instant that the Vlasov
model breaks down, leading to a range of conflicting
“definitions” for wave breaking. As will be shown below,
this is particularly the case for ultra-relativistic plasma
waves, i.e. plasma waves obeying γϕ

2β‚ >> 1, where γϕ is
the Lorentz factor corresponding to the phase speed of the
plasma wave, β = (3kT0/mc2), T0 the initial plasma
temperature and m the electron mass.

It is demonstrated in this paper that great care must be
taken in verifying that the breakdown of any fluid model
used for the study of wave breaking coincides with the
breakdown of the original quasi-static Vlasov model, and
that a correct relativistic warm-fluid model is used that is
also valid in the ultra-relativistic regime. It is shown here
that for models meeting these two criteria [8] higher, more
realistic wave breaking limits are found than for models
that fail to meet them [10-14]. In an extension to the model of
Katsouleas and Mori [8], a lower bound to the wave
breaking field is derived here for the first time, as a
complement to the upper bound presented there. Using
this new lower bound, it is shown that a wave having phase
speed vϕ = c in a plasma with a finite initial temperature
will not ever break, regardless of its amplitude.

This result has important repercussions for the research into
multi-GeV electron acceleration in laser-wakefields [6,15]. Very
large electric fields are needed for this acceleration scheme,
so it would be problematic if there would exist a finite upper
bound for the wave-breaking limit in a warm plasma even
for vϕ → c, as predicted by several authors [10,12-14].
Fortunately, it is found here that the wave-breaking limits
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calculated in those papers are inherently too low, and that
the wave breaking threshold in the limit vϕ → c tends to
infinity, as derived by Katsouleas and Mori [8].

Relativistic fluid dynamics
Before embarking on the study of wave breaking, we will
give a short summary of relativistic fluid dynamics [16-18],
since there are important differences with non-relativistic
fluid dynamics. We will also clarify the differences between
fully relativistic fluid dynamics and the so-called warm-
plasma approximation [19], which is used when the mean
plasma velocity is relativistic, but the thermal velocity
spread is not.

In non-relativistic fluid dynamics, the internal energy U is
a second order moment of the velocity distribution which
can be separated exactly into the mean-flow energy and the
thermal energy. The energy flux is a third order moment
which can be separated exactly into the flux of mean
energy, the flux of thermal energy along the mean flow,
and the flux of thermal energy from one fluid element to
the next. The latter quantity is often denoted as the heat
flow. The fluid pressure P is a second order moment
satisfying P = 2U for a 1-D fluid, or P = 2U/3 for a 3-D
fluid. The ratio of heat capacities is given by cp/cv =
(U+P)/U, so cp/cv = 3 for a 1-D fluid, and cp/cv = 5/3 for a
3-D fluid. On adiabatic compression, i.e. when the heat
flow during compression is negligible, we have P ~ ncp/cv, or
P ~ n3 for a 1-D fluid.

In relativistic fluid dynamics [16-18], things are quite different
however. The internal energy is still a second order
moment, but it cannot be separated directly into mean and
thermal energy any more, since the rules for adding
velocities have changed. The relativistic energy flux is a
second order moment of the relativistic momentum
distribution rather than a third order moment, and once
again it is not straightforward to separate it into mean
energy transport, thermal energy transport, and heat flow.
The fluid pressure P is still a second order moment, but
now satisfies the equation U ≥ P/2 + [1+ (P/2)2]1/2-1. This
means that cp/cv ranges from 3 for a non-relativistic plasma
(P << 1) to 2 for an ultra-relativistic plasma (P >> 1).

An approximation that is used quite often in the theory of
relativistic plasma dynamics is the so-called warm-plasma
approximation [19]. In this approximation, it is assumed that
the plasma temperature is much smaller than the kinetic
energy associated with the mean flow. Among other things,
this allows the approximate (not exact) separation of the
internal energy and energy flux into contributions
comparable to the non-relativistic case. The heat flow can
then be approximated by third-order centered moments
(centered with respect to the mean momentum), and the
pressure can be written as P ~ n3 for not-too-extreme
adiabatic compression. As such, the warm-plasma
approximation is more like non-relativistic fluid dynamics,
avoiding most of the intricacies of the fully relativistic
theory. As we shall see below, this approximation is not
suitable for the study of breaking of (ultra-)relativistic
plasma waves, since such waves may drive the plasma to
temperatures for which the warm-plasma approximation is
no longer applicable.

A special note of warning should be issued concerning the
study of adiabatic processes in the plasma, since fast wave
propagation is normally considered to be adiabatic. For

non-relativistic plasmas, and in the warm-plasma
approximation [19], the heat flow is given by third-order
moments of the momentum distribution. Thus, for an
adiabatic process, the third-order moments will vanish,
providing a neat way to close the system of moment
equations and arrive at a warm-fluid model. For a fully
relativistic plasma however, the heat flow is not given by
the third-order moments any longer [16-18], and setting the
third-order moment to zero is no longer equivalent to
considering an adiabatic process. In fact, the third-order
moments can grow fairly large for ultra-relativistic
adiabatic processes, and uncompromisingly forcing them to
zero will lead to incorrect results, possibly even violation of
the first and second law of thermodynamics.

Wave breaking and particle trapping
As stated above in our definition of wave breaking, wave
breaking and background particle trapping are intimately
related, and many attempts were made in the past to unite
them. However, such attempts were often complicated by
the fact that most models for plasma wave propagation
employ the quasi-static approximation, which does not
tolerate any particle trapping at all: as soon as the first
particle gets trapped, any quasi-static model will break
down immediately. The solution to this is to employ a
quasi-static model based on a so-called waterbag
distribution: a distribution that is a non-zero constant for
thermal speeds smaller than the electron sound speed, and
zero otherwise. This distribution behaves like a Gaussian
distribution in many aspects, but particle trapping will be
postponed until particles at (initially) the electron sound
speed can be trapped. Thus, a quasi-static waterbag model
will break down at the same instant that large-scale particle
trapping sets in for a non-quasi-static Gaussian model,
triggering wave breaking according to our definition. This
renders the quasi-static waterbag model quite suitable for
wave breaking, since the point of breakdown of this model
can be determined analytically to great accuracy.

The quasi-static waterbag model is employed explicitly by
Coffey [3] and Katsouleas and Mori [8], who define wave
breaking by the trapping of the upper waterbag
boundary. It should be noted however, that most other
work on wave breaking still favours the waterbag
distribution implicitly, even if it is not mentioned. This is
because almost all work on plasma wave breaking starts
from the following assumptions: (i) the wave is quasi-
static, and (ii) its propagation is an adiabatic process. As
it happens, the waterbag distribution is the only one that
satisfies both assumptions exactly, so it is implicitly
favoured over other distributions, which can only satisfy
the assumptions approximately. So even papers that argue
that they do not restrict themselves to a particular
distribution function are still doing so, and are thus less
general than they claim to be.

We have studied particle trapping for a wave on the verge
of breaking for two different models: the fully relativistic
model of Katsouleas and Mori [8], and the weakly
relativistic model of Rosenzweig, Sheng and Schroeder [10,12-

14]. For this, we used the Hamiltonian approach of Ruth
and Chao for particle dynamics in a wakefield [20], where the
wakefield potential was of course taken from the various
plasma models we considered. It should be noted that for
proper application of this method, a few common
mistakes, made by several authors [10,14], should be avoided:
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(i) one cannot express a particle’s velocity directly as the
sum of a mean velocity and a thermal part, since addition
of relativistic velocities is governed by special rules, (ii)
even though several authors do this, describing a warm
plasma as a distribution of test electrons governed by the
wakefield potential of a cold plasma is not correct, as it
will miss out the effect of pressure on the relationship
between mean velocity and electrostatic fields, (iii) the
average speed of the electron fluid is not equal to the speed
of a particle that is initially at rest; in fact, the mean fluid
flow does not correspond to any individual particle orbit,
and (iv) when the wakefield potential for a warm plasma is
used, one must not add an additional term for the plasma
pressure to the Hamiltonian, as the plasma pressure is a
fictitious force acting on the mean plasma speed, and not a
real force acting on individual particles.

When comparing the models of Katsouleas and Mori [8]

and Rosenzweig [10,12-14] in the ultra-relativistic regime, we
found that a wave on the verge of breaking according to
the former model can trap particles having the electron
sound speed initially. This means that the breakdown of
this model corresponds to true wave breaking, i.e. loss of
wave structure in the Vlasov solution. However, a wave on
the verge of breaking according to Rosenzweig’s model can
only trap particles moving at twice the electron sound
speed or faster; this means that Rosenzweig’s model
already breaks down long before any breakdown or loss of
periodicity can be observed in the corresponding Vlasov
solution. Thus, the “wave-breaking limits” as predicted by
Rosenzweig’s model are systematically too low, which
should not be surprising given that their expression for the
plasma pressure (P ~ n3) is systematically too high for
relativistic plasmas.

The systematic comparison of limits for wave breaking and
particle trapping has revealed problems with a number of
available models for warm-plasma wave breaking. A second
attempt by Rosenzweig [11] to calculate a wave-breaking limit
using a three-fluid model also exhibits shortcomings. While
the model has been constructed in such a way that it breaks
down when the fastest of three cold fluids gets trapped by a
passing plasma wave, its peculiar velocity distribution, as
well as the strange way in which closure of the system of
moment equations has been obtained, lead to an effective
pressure P ~ n1/2, which is of course much too low. The
resulting wave breaking limit is much too high, Ewb ~ γϕ

1/2,
resembling the limit for a cold plasma [2].

Another method that has been employed by several
authors [21] is the so-called method of characteristics, which
can be used to obtain solutions to the quasi-static Vlasov
equation for arbitrary initial velocity distributions, i.e. not
just waterbags. Integration of these solutions is carried out
using the method of steepest descent. Because of certain
approximations used in this approach, the solutions can
tolerate some degree of particle trapping without breaking
down, rendering this method ideal to study the relation
between wave breaking and particle trapping.
Unfortunately, both Aleshin and Khachatryan [21] carry this
method too far, continuing to increase the wave amplitude
until virtually all plasma particles have been trapped, and
there are none left to drive the collective oscillations that
make up the wave. In other words, the breakdown of such
models occurs too late, long after the wave has already
collapsed and disappeared. As a result, both the derived

wave breaking limits and the alleged soliton formation for
waves on the verge of breaking that have been obtained
through this method appear to be the result of incorrect
modelling rather than new physics. So while the method of
characteristics can be a valuable tool in the study of wave
breaking, and particle trapping analysis reveals that it
must be used with care, and not pushed beyond its
inherent limitations.

Wave breaking limit for relativistic waves in a warm
plasma
In this section, we will present upper and lower bounds for
the wave-breaking limit on the electric field of a plasma
wave using the model of Katsouleas and Mori [8]. We use
this model because our previous analysis has revealed that
this is the only model that applies relativistic fluid
dynamics correctly, while we have shown that other models
yield results that are systematically too low or too high.
Wave breaking can be defined as either the trapping of
electrons having the electron sound speed initially, or the
breakdown of the quasi-static model, as these definitions
coincide for this model; see the previous section.

In their original paper, Katsouleas and Mori only derived
an upper bound for the wave-breaking limit in the ultra-
relativistic regime. However, in order to set it apart from
Rosenzweig’s approach [10], and in order to make the
distinction between the ultra-relativistic regime (in which
relativistic thermal effects are dominant) and the regime of
today’s laser-wakefield experiments (in which thermal
effects form a small correction to the cold relativistic
model of Akhiezer and Polovin [2]), we will derive lower and
upper bounds for both the laser-wakefield regime and the
ultra-relativistic regime.

In the laser-wakefield regime, γϕ
2β << 1, the following

lower and upper bounds for the wave-breaking field have
been found:

These results can readily be recognized as the cold
relativistic limit derived by Akhiezer and Polovin [2], with
small thermal corrections. The bounds differ by a small
amount only, and the lower bound is actually equal to the
expression derived by Schroeder using Rosenzweig’s model
[10,13,14]. This follows from the fact that in the laser-wakefield
regime the differences between Katsouleas and Mori’s
model and Rosenzweig’s are actually quite small; however,
it already goes to show that the values predicted by
Rosenzweig’s model are too low, as they provide only a
lower bound for the true wave-breaking field.

In the ultra-relativistic regime, γϕ
2β‚ >> 1, the following

lower and upper bounds for the wave-breaking field have
been found:

The upper limit is a confirmation of the value found by
Katsouleas and Mori, while the lower limit has been
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added to get a better grip on the behaviour of Ewb as γϕ
approaches infinity. It can be seen that both bounds
approach infinity as γϕ tends to infinity, taking the
actual wave breaking limit with them. This emphasizes
the difference with Rosenzweig’s model, in which the
wave-breaking limit tends to a finite value when γϕ tends
to infinity.

The behaviour of Ewb for large γϕ, i.e. vϕ tends to c, has
important consequences. In Katsouleas and Mori’s model,
a wave having finite amplitude and vϕ = c cannot ever
break, while in Rosenzweig’s model, such a wave can still
break provided its (finite) amplitude is large enough.
However, a plasma wave cannot be considered broken if all
plasma particles are slower than the wave, so breaking of a
plasma wave having vϕ= c implies that at least some plasma
particles are accelerated to speed c. Since such particles
would have infinite energy, they cannot be produced by a
finite wave, so it follows that a finite wave cannot break at
all. Katsouleas and Mori’s model agrees with this, while
Rosenzweig’s model clearly fails on this count.

Conclusions
In conclusion, wave breaking of longitudinal waves in a
warm plasma has been studied. A quantitative definition
of wave breaking has been provided and compared against
other definitions used in the literature. In a number of
cases, wave breaking has been equated to breakdown of
the mathematical model, without adequate verification
that this coincides with a physical breakdown of the wave.
Having studied the fluid dynamics for a warm, relativistic
plasma it has been demonstrated that there is only one
model on wave breaking that handles this correctly [8]. This
model has been expanded here to derive both upper and
lower limits for the electric field amplitude Ewb at wave
breaking, for both γϕ

2β << 1 and γϕ
2β >> 1. It has been

shown that in the latter regime Ewb
2 ~ ln(γϕ

1/2β1/4) /β1/2,
which implies that for fixed β and γϕ → ∞, Ewb tends to
infinity, so a wave with phase speed vϕ = c will not ever
break, regardless of its amplitude. This is particularly
relevant for multi-GeV electron acceleration schemes [15],
since such schemes rely on the possibility of generating
very large longitudinal fields in plasmas. Finally a number
of existing misunderstandings on the behaviour of a
relativistic plasma wave near breaking has been clarified.
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