
83Central Laser Facility Annual Report n 2006/2007

3

Introduction
Plasma channels play an important role in laser-plasma
interaction, as they offer a practical solution to the
problem of extending the interaction length beyond the
limit set by geometric diffraction [1,2]. A plasma channel
can be employed as an efficient medium for X-ray lasing
[3], harmonic generation [4] or Raman amplification [5].
Furthermore, a recent experiment demonstrated GeV
electron acceleration in a channel-guided laser wakefield
accelerator for the first time [6]. The principle behind
plasma channel guiding is that a plasma column that has
a radial density profile with an on-axis minimum can,
through the dependence of refractive index on plasma
density, act as a lens for laser light [7]. Guiding over long
distances is possible due to a balance between the inward
bending of light rays through the refractive index
gradient and the outward expansion through geometric
diffraction. The laser can propagate without significant
spot size or centroid oscillations if it couples into a single
eigenmode of the channel, in which case it is said to be
matched. However, for different spot sizes, off-axis
injection or injection under an angle with the channel
axis, sizeable spot size or centroid oscillations do occur,
and the pulse is called mismatched. Mismatched injection
may lead to loss of pulse intensity. Plasma channel
guiding is not the only way to achieve a long laser-plasma
interaction length: alternative methods include capillary
guiding (relying on total internal reflection on the
capillary boundary) [8], relativistic self-focusing [9], and
laser pulse shaping [10].

As with other types of wave guides, such as optical fibers,
it is possible with a plasma channel to guide the light
along a curved path by bending the waveguide. This has
been experimentally demonstrated by Ehrlich et al. for
laser pulses with relatively low peak intensities (up to 
1016 Wcm-2) [11]. The authors provide an analytical estimate
for the minimum radius of curvature for confinement the
laser pulse to the curved channel. In this paper we discuss
the weakly nonlinear regime (laser peak intensities around
1017 Wcm-2, for which relativistic and ponderomotive
effects start to play a role. We expect that it is not possible
to bend laser pulses in the strongly nonlinear regime (peak
intensity 1018 Wcm-2 and above) in curved plasma
channels, as it becomes increasingly difficult to radially
confine the laser pulse. Furthermore, strong coupling with
the wakefield will lead to large losses and pulse
deformation. The motivation for this work is to investigate
the use of curved plasma channels for electron
acceleration, as for example the ability to bend the laser
light and/or the electron bunch may be interesting for the
design of a multi-stage laser wakefield accelerator. In this
paper we only address the propagation of the laser pulse,
leaving the electron acceleration dynamics for possible
future investigation.

Envelope equation
Here we present the envelope equation that describes the
evolution of a laser pulse that propagates in a circular
plasma channel. We simplify the geometry of the problem
by setting ∂/∂y = 0 in all equations. A radial coordinate r
is defined as r = (x2+z2)1/2 - R with R the radius of the
plasma channel and the plasma density is assumed to be
parabolic close to r = 0: np(r) = n0 (1+r2/rc

2), where rc « R
determines the curvature of the parabolic density profile.
A laser pulse with linear polarization in the y-direction is
assumed, and the evolution of the vector potential is
described with the wave equation (c2∂2/∂x2 + c2∂2/∂z2 -
∂2/∂t2) Ay = ωp

2 Ay where ωp
2 = 4π np e2/m defines the r-

dependent plasma frequency ωp. We introduce the obvious
change of coordinates (x,z) to (r,φ=arctan[x/z]), and
assume that Ay is the product of a slowly varying envelope
and a rapidly varying carrier wave eAy/mc2 = [a(r,φ,t)
exp(ik0Rφ - iω0t) + c.c.]/2, where a is given in
dimensionless form. Furthermore, we introduce a
comoving coordinate s = Rφ-ct, and find that

In the limit R→ ∞, the usual envelope equation is
recovered [12]:

(2)

where ω0 = ck0 (approximation of very underdense
plasma) has been used, and a second-order t-derivative has
been omitted (slowly varying envelope approximation).

Paraxial approximation
As a first step, effects related to finite laser pulse length
have been omitted, i.e. ∂/∂s = 0 is assumed (paraxial
approximation). Keeping terms to lowest order in r/R gives

(3)

From the similarity between Eq. (3) and the 1-particle
Schrödinger equation, one can see that the quantity
between brackets on the right hand side of the equation
plays the role of a potential. Therefore it makes sense to
introduce an effective density n = np - 2ncr r/R, which is
proportional to this potential, where ncr is the critical
density. The minimum of the effective density, which
defines the equilibrium position of the laser pulse, is
located at r = (ω0/ωp0)

2 rc
2/R, where ωp0 = ωp (r = 0).
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This implies that a laser pulse injected around r = 0, which
is the usual condition for matching in a straight channel,
will be mismatched and undergo a radial oscillation
around the equilibrium position. If the amplitude of this
oscillation is large, the approximation of a parabolic
channel may break down.

Figure 1. Radial density profile of a curved plasma channel
(dashed line) and corresponding effective density for 
R = 1 m (solid line).

In a realistic plasma channel, this would lead to
attenuation of the laser pulse due to leakage from the
channel. The shift in equilibrium position should be small
compared with the channel radius, which requires 
rc/R « (ωp0/ω0)

2. This is a much stronger requirement than
the condition rc/R « 1 stated above. We illustrate this point
by introducing a realistic density profile in Fig. 1, which is
modelled after the profile of a slow capillary discharge
plasma channel [13,14] with a 200 µm radius and a bottom
density n0 = 1018 cm-3. Also shown is the effective density
profile for a curved channel with R = 1 m. In our
simulations, the initial conditions for the laser pulse are 

(4)

First, we consider the initial conditions for a laser pulse that
is matched to a non-curved channel r0 = 0, r1 = (crc/ωp0)

1/2

= 43 µm, a0
2 = 0.5. Because of a relatively large shift in

equilibrium position, consistent with rc/R = 0.6 (ωp0/ω0)
2,

we expect to observe strong centroid and spot size
oscillations, as well as loss of laser pulse intensity due to
leakage of radiation, as shown in Fig. 2a. In order to avoid
centroid oscillations altogether, we propose to inject the
laser pulse off-axis, around the equilibrium position. Fig. 2b
shows the simulation result for r0 = 120 µm (which is the
local minimum of the effective density), r1 = 43 µm,
a0

2 = 0.5. We still observe centroid and spot size oscillations,
but they are not as severe as those found in Fig. 2a. Also,
there is no appreciable attenuation. We do, however, observe
a periodic deformation of the pulse shape from Gaussian
into different asymmetric shapes. This is most likely caused
by the asymmetric form of the effective density, for which
the parabolic approximation is valid in a much smaller
region around the equilibrium position than in the case of a
straight channel (see Fig. 1). Also, the curvature at the
equilibrium position is larger for the curved channel than
for the straight channel. Thus it should be possible to
reduce centroid and spot size oscillations even further by
using a smaller spot size and perhaps adjusting the injection
position. This is confirmed by the simulation result shown

in Fig. 2c, which corresponds to r0 = 115 µm, r1 = 30 µm,
a0

2 = 0.5. Note also that there is much less pulse shape
deformation than in Fig 2b.

Figure 2. Contour plots of the evolution of |a|2 in a curved
plasma channel for 3 different initial conditions: a) r0 = 0,
r1 = (crc/ωp0)

1/2 = 43 µm, b) r0 = 120 µm, r1 = 43 µm,
c) r0 = 115 µm, r1 = 30 µm. In all cases a0

2 = 0.5.

Figure 3. Contour plots of the evolution of |a|2 (top) and
effective density (bottom) with self-focusing. Initial
conditions: r0 = 120 µm, r1 = 20 µm, a0

2 = 0.5.
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Figure 4. Contour plots of the evolution of |a|2 (top) and
effective density (bottom) with self-focusing. Initial
conditions: r0 = 120 µm, r1 = 20 µm, a0

2 = 1.2.

For a laser pulse in the relativistic regime (i.e. a0 of order
1) one has to consider the effect of self-focusing. For
simplicity, we consider only relativistic self-focusing, i.e.
the change of refractive index due to the relativistic mass
correction that stems from the quiver motion, and leave
out ponderomotive self-focusing, i.e. radial electron
blowout due to the light pressure. For a thorough
discussion of both types of self-focusing, see Refs. [15]

and [16]. Relativistic self-focusing is modelled by changing
the ωp

2a-term in Eq. (3) to ωp
2a/(1+|a|2)1/2. As a

consequence, the effective density becomes n =
np/(1+|a|2)1/2 - 2ncr r/R. As we expect the matched spot size
for the self-focusing case to be smaller than without self-
focusing [15,16], we select the initial conditions r0 = 120 µm,
r1 = 20 µm for two different pulse intensities, correspon-
ding to a0

2 = 0.5 and a0
2 = 1.2, and we present the

simulation results in Figs. 3 and 4, respectively. These
Figures show the evolution of |a|2 and the effective density.
Due to the feedback from the laser pulse on the effective
density, the centroid and spot size oscillations are seen to
be damped, and the system evolves towards an
equilibrium. At high intensity (the case a0

2 = 1.2) we
observe that the equilibrium position is further from the
axis and the equilibrium spot size is smaller than at low
intensity (a0

2 = 0.5). These results can be understood as
follows. If the peak of the laser pulse is at the equilibrium
position, i.e. at the minimum of the effective density, then
that position is found to be r0 = (1+a0

2)1/2(ω0/ωp0)
2rc

2/R
where we have used a parabolic approximation for the
channel density profile and Eq. (4) for the laser pulse.
Thus the equilibrium position r0 is seen to be further from
the axis than in the case without self-focusing, and more
and more so with increasing pulse intensity. This confirms
that very intense pulses cannot be confined in curved
plasma channels due to self-focusing effects, as stated in
the Introduction. Close to r = r0 we may write the
effective density as n/n0 = C + (r-r0)

2/tc
2, where C is a

constant and tc determines the curvature. The matching
condition for the laser spot size is r1 = (ctc/ωp0)

1/2, which
can be used to determine tc self-consistently. It is found

that tc/rc is smaller than 1 and decreases with increasing
a0.This implies that the spot size is smaller than without
self-focusing, and decreases with increasing intensity.

Finite pulse length
We retain the longitudinal dependence in Eq. (1) and
model the energy loss to the plasma by taking into account
the effect of the wakefield. Again, we assume to be in a
weakly nonlinear regime, so that a linear hydrodynamic
description of the wakefield is adequate. It turns out that,
to leading order, the wakefield equations in a curved
channel are identical to the ones in a straight channel,
which were derived in Ref. [17]:

(5)

where Ψ denotes the wakefield potential. To lowest order
in r/R, the envelope equation becomes

(6)

where Ωp(r,s,t) is a localized plasma frequency that takes
into account the coupling between the laser pulse and the
plasma wave. In terms of the wakefield potential, it is
expressed as Ωp

2 = ωp
2(1 - Ψ)+c2∂2Ψ/∂r2. We have

numerically simulated laser pulse propagation by solving
the coupled equations (5) and (6). A double Gaussian laser
profile 

(7)

is taken as initial condition, with s1 = 9 µm, a0
2 = 0.05,

r0 = 115 µm, r1 = 30 µm (matched pulse) and r0 = 55 µm,
r1 = 35 µm (mismatched pulse). The simulation results are
presented in Figures 5 and 6 in the form of contour plots
of |a|2 integrated over r and s, which reveal the longitudinal
and transverse envelope dynamics. In these Figures, it is
convenient to use a longitudinal coordinate σ = Rφ - vt
with some v<c to cancel the slippage that occurs in the 
s = Rφ - ct -frame. This slippage is partly due to the laser
pulse group velocity being less than c, and partly a
geometric effect, as points of constant s move with velocity
(1+r/R)c in the φ-direction. For our simulations, it turns
out that v/c = (1-1/γ2)-1/2 with γ ≈ 33 is a good choice to
track the laser pulse (for comparison, ω0/ωp0 ≈ 41).

As expected, the ∫ |a|2 dσ-plots of the transverse envelope
dynamics show large centroid oscillations in the case of a
mismatched pulse (Fig. 6), and relatively small centroid
and spot size oscillations for a matched pulse (Fig. 5). For
the explanation of the observed drift of the centroid
towards the axis, we refer to our paper in Phys. Plasmas [18].
The ∫ |a|2 dr-plots of the longitudinal envelope dynamics
show the formation of a narrow peak towards the end of
the pulse at about ct = 13 cm and a subsequent
broadening of this feature. This behaviour is typical for the
evolution of the laser pulse in a resonant laser wakefield
accelerator, which has an initial pulse length of about half
of the plasma wavelength to maximize the wakefield
amplitude. In our case the initial pulse length is only

ak
s

ik
sRr

R
rrRr

c
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+
∂

∂

+
+

∂
∂

+
+

∂

∂ 2
002

2

22

2
2 2

)(

1
2

aa
t

i
s

c
ts

c
t p

22
002

2
2

2

2

2

22 Ω=⎥
⎦

⎤
⎢
⎣

⎡
−

∂

∂
−

∂

∂
+

∂∂

∂
−

∂

∂
− ωω

aa
r

c
ts

c
t

i p
2

2

2
2

2

0 22 Ω=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂∂

∂
+

∂

∂
ω

a
R

r
a

r
c

t
i p ⎥⎦

⎤
⎢⎣

⎡ −=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂ 2
0

2
2

2
2

0 22 ωωω

]2/)(exp[)( 2
1

2
00 rrrara −−=

4
|| 2

2

2

2

2

2

22

2

22

2

2

2

2 a
rccsr

c
srrs

pp

p
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

∂∂
∂

−
∂
∂

−
∂
∂ ω

ψ
ω

ω

=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂∂

∂
+

∂

∂
a

r
c

ts
c

t
i

2

2
2

2

0 22 ω

a
s

c
s

c
R

r
p ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−

∂

∂
−−Ω

2

2
2

0
2
0

2 22 ωω

)]2/()2/()(exp[),( 2
1

22
1

2
00 ssrrrasra −−−=

ak
s

ik
sRr

R
rrRr

c
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+
∂

∂

+
+

∂
∂

+
+

∂

∂ 2
002

2

22

2
2 2

)(

1
2

aa
t

i
s

c
ts

c
t p

22
002

2
2

2

2

2

22 Ω=⎥
⎦

⎤
⎢
⎣

⎡
−

∂

∂
−

∂

∂
+

∂∂

∂
−

∂

∂
− ωω

aa
r

c
ts

c
t

i p
2

2

2
2

2

0 22 Ω=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂∂

∂
+

∂

∂
ω

a
R

r
a

r
c

t
i p ⎥⎦

⎤
⎢⎣

⎡ −=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂ 2
0

2
2

2
2

0 22 ωωω

]2/)(exp[)( 2
1

2
00 rrrara −−=

4
|| 2

2

2

2

2

2

22

2

22

2

2

2

2 a
rccsr

c
srrs

pp

p
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

∂∂
∂

−
∂
∂

−
∂
∂ ω

ψ
ω

ω

=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂∂

∂
+

∂

∂
a

r
c

ts
c

t
i

2

2
2

2

0 22 ω

a
s

c
s

c
R

r
p ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−

∂

∂
−−Ω

2

2
2

0
2
0

2 22 ωω

)]2/()2/()(exp[),( 2
1

22
1

2
00 ssrrrasra −−−=

ak
s

ik
sRr

R
rrRr

c
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+
∂

∂

+
+

∂
∂

+
+

∂

∂ 2
002

2

22

2
2 2

)(

1

aa
t

i
s

c
ts

c
t p

22
002

2
2

2

2

2

22 Ω=⎥
⎦

⎤
⎢
⎣

⎡
−

∂

∂
−

∂

∂
+

∂∂

∂
−

∂

∂
− ωω

aa
r

c
ts

c
t

i p
2

2

2
2

2

0 22 Ω=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂∂

∂
+

∂

∂
ω

a
R

r
a

r
c

t
i p ⎥⎦

⎤
⎢⎣

⎡ −=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂ 2
0

2
2

2
2

0 22 ωωω

]2/)(exp[)( 2
1

2
00 rrrara −−=

4
|| 2

2

2

2

2

2

22

2

22

2

2

2

2 a
rccsr

c
srrs

pp

p
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

∂∂
∂

−
∂
∂

−
∂
∂ ω

ψ
ω

ω

=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂∂

∂
+

∂

∂
a

r
c

ts
c

t
i

2

2
2

2

0 22 ω

a
s

c
s

c
R

r
p ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−

∂

∂
−−Ω

2

2
2

0
2
0

2 22 ωω

)]2/()2/()(exp[),( 2
1

22
1

2
00 ssrrrasra −−−=

High Power Laser Science n Theory and Computation

|a|2

n/n0

ct (cm)

r
(µ

m
)



High Power Laser Science n Theory and Computation

Central Laser Facility Annual Report n 2006/200786

3
slightly longer, and the pulse evolution is very similar [19].
The peak formation is a characteristic of an explosive
instability caused by the mutual interaction between the
laser pulse and its own wakefield [20]. The most striking
difference between the longitudinal dynamics plots of Fig.
5 and Fig. 6 is the pulse oscillation observed in Fig. 6. This
is most likely caused by the geometric effect described
above: points of constant s (or σ) have a velocity in the 
φ-direction that depends on r, so if the pulse experiences
appreciable centroid oscillations, as observed in the
transverse dynamics plot of Fig. 6, this will also result in
oscillations in the σ-frame. Note also that both oscillations
in Fig. 6 have the same period.

Figure 5. Contour plots of the evolution of ∫ |a|2dσ (top)
and ∫ |a|2dr (bottom). Initial conditions: r0 = 115 µm,
r1 = 30 µm, s1 = 9 µm, and a0

2 = 0.05.

Figure 6. Contour plots of the evolution of ∫ |a|2dσ (top) and
∫ |a|2dr (bottom). Initial conditions: r0 = 55 µm, r1 = 35 µm.

Summary
In this paper, analytical and numerical studies of bending
of laser light in a curved plasma channel have been
presented. The laser pulse envelope dynamics in a plasma
channel has been studied in the paraxial approximation.
Pulse propagation in a channel with a relatively small
radius of curvature and a realistic plasma density profile

has been simulated to demonstrate how large-amplitude
centroid oscillations can lead to attenuation. Off-axis
injection of the laser pulse around its equilibrium position
has been proposed as a means of avoiding these centroid
oscillations, as illustrated in Fig. 2. Furthermore,
relativistic self-focusing and its effect on the equilibrium
position and spot size have been discussed. The
equilibrium position has been found to shift outward and
the equilibrium spot size to decrease with increasing pulse
intensity. Subsequently, finite pulse length effects and
wakefields have been included. A near-resonant pulse
length has been chosen and it has been found that the
longitudinal envelope dynamics are very similar to those of
a pulse in a straight channel. The simulation results for the
transverse envelope dynamics have been found to be
similar to the results in the paraxial approximation.
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