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Introduction
The introduction of CPA high power short pulse lasers has
opened a new area of development of recombination
pumping for soft X-ray lasers. In particular it becomes
feasible to envisage that the pump pulse may be made
sufficiently short to allow laser action from the excited to
the ground state despite the self-terminating nature of these
transitions. The hydrogen-like sequence of ions are
particularly attractive for this application, having a large
energy gap between the ground and resonance (n=2) states.
Using linearly polarized pump light ensures a population of
cold electrons following ATI ionization, which can
guarantee a completely fully stripped set of ions [1]. Adding
hydrogen buffer gas to increase the cold electron population
gives a good measure of control over the effective electron
density and temperature independent of lasant ion [2].

Initial studies considered cases of lasing between excited
states, but more recently attention has turned to transitions
to the ground state [3]. In a detailed study involving the
temporal development of the electron distribution function
resulting from inverse bremsstrahlung, electron
equilibration and three-body recombination heating, the
author found that the initial non-Maxwellian electron
distribution assumed a quasi-Maxwellian form with a high
energy tail, but a cold mode, which governed the
recombination [4]. Population inversions to the ground state
were generated in the subsequent recombination cascade,
but were relatively short lived.

In view of this encouraging result, it became worthwhile to
re-examine the general theory of cascade recombination to
see the conditions under which ground state inversions
could be generated. This theory was developed during the
1960’s using three different approaches. The most general
model is the collsional-radiative approach of Bates et al. [5]

and McWhirter and Hearn [6], which has been used in most
subsequent work; the Fokker-Planck approach [7] which is
valid in the limit of low temperature; and the heuristic
‘bottleneck’ picture [8], which provides a useful visualization
of the problem.

In this work we have used the collisional-radiative model
with 200 excited levels specified by their principal quantum
number, n, to represent a hydrogenic-ion of charge Z. The
collisional excitation and ionization rates are calculated
using the Bethe approximation (the latter by analytic
continuation into the continuum from the former), and the
empirical Gaunt factor [9], which is adequate for this
purpose. De-excitation and direct three-body
recombination rates are given by detailed balance.
Radiative rates are generated by the standard dipole
transition rate with recombination again by extension into
the continuum.

Depression of ionization is not included. The higher states
provide the correct density of states and excitation/de-
excitation rates as in the depressed continuum provided they
are continuous across the ionization boundary as is the case
here. Problems will arise if we self-consistently calculate the
loss of electrons from the background when it will be
important to carefully estimate the number in bound states.
However as we are envisaging a large background electron
density from the buffer gas, we may treat the electron
density as constant. We will also neglect electron heating
during three body recombination for the same reason.

Scaling relations
We cast our primary variables into dimensionless forms.

(1)

and similar forms for the ion and excited state densities N∞
and Nn. Since the Fermi energy EF = (h2/2me)(3ne/π)2/3,
the term Ne = (1/6√π)(EF/kT)3/2 represents the condition
for the avoidance of the onset of degeneracy, namely 
Ne << 0.1. In is the ionization energy of state n.

In terms of these variables we may write the basic
equations to be solved for the time development of the
state populations as

(2)

where qn is the population of the state n, q∞ the
continuum population, and Cnm and Anm the collisional
and radiative rates from the state m to n. The continuum
population is given by the equation

(3)

Summing we obtain the result that  
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Population inversion with respect to the ground state generated in
recombination
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i..e. the total population is constant. The collisional rate
coefficients are conveniently written in terms of a rate 
A = 2IH/h = 6.575×1015 sec-1, and the radiative constant
A×B where B = πα3Z4 = 1.221×10-6 Z4 and α is the fine
structure coefficient. In terms of these variables the time
used in equations (2) and (3) is written in units of (A Ne)

-1.

In the steady state the analysis can be further reduced by a
simple scaling with Z. From Saha’s equation which in
terms of (1) takes the form 

(4)

it is clear that Nn and N∞ must scale differently. Thus
eqn.(2) cannot be satisfied. However in the steady state,
we can neglect eqn.(2), set N∞ to an appropriate value
(unity) and calculate relative populations and rates
accordingly. Thus for this situation we may introduce the
scaling Ne ~ Z4, and appropriate scalings for Nn and N∞
[10], which satisfy eqn.(4).

Development of the excited state populations

We consider the case where the ions are initially fully
stripped into bare nuclei and follow the development of the
population in the excited states. Fig.1 shows a typical case.

Figure 1. Plots of the populations of the excited states
scaled against the Saha population plotted for principal
quantum numbers 1-20 for different times for the case Z=3,
Ne=3×10-4 and Y=40.

The high lying states equilibrate with the continuum
extremely rapidly, in a time ~Y/n2. As can be seen the
populations progressively diffuse to their equilibrium
value. By time 10 all states except n=2 have practically
reached their steady state. There is correspondingly a
significant reduction in the continuum population with
most electrons in the high lying states – the normal
thermal equilibration process continued into the initial
void below the continuum.

The consequence of progressive filling of the excited states
is the establishment of population inversions.

Fig.2 shows the growth of the population, plotted as qn/gn,
in a lithium system following ionization at a temperature
Y=40 (3eV.). It can be seen that at the higher density 

3×10-4 (1019cm-3) an inversion is formed between the
ground state and the resonance level lasting for about 
16 units (8ps.) However at the lower density 
6×10-5 (2×1018 cm-3) no inversion is formed. Indeed it can
be seen that this case is critical in that the n=1 and n=2
profiles touch.

Figure 2. Time development of the reduced populations of
the ground, and first and second excited states in Li2+ at
temperature Y=40 and two different densities Ne=6×10-5

and Ne=3×10-4.

Examining fig.2 more closely we can see that the history of
the n=3 is the same at both densities, and the n=2 nearly
so. Clearly this reflects a scaling of both the temporal
development and the final steady state values of the
population, which are independent of the density but vary
with the temperature.

Figure 3. Time development of the reduced populations of
the ground, and first and second excited states in C5+ at
temperature Y=40 and densities Ne=3.4×10-3.

Fig.3 shows a similar threshold case in carbon at the same
temperature Y=40 (12eV.) and density Ne=3.4×10-3

(9×1020cm-3). It can be seen that in this case also the
population graphs of n=1 and n=2 touch.

If we contrast the two limiting cases in figs 2 and 3 we
observe that the time history in our reduced units is
identical. This in fact is an example of a general rule,
namely that the population development and values of the
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populations scale with the density parameter Z-4 Ne. This
scaling is associated with the steady state picture and
appears in violation of the conservation equation (3). It
arises from a combination of factors

1. Most of the population lies in the high lying excited
states and the continuum population is small,
generating an approximately steady-state distribution
amongst the excited states.

2. Introducing the Z-4 scaling to Ne and hence to the time
removes the Z scaling of the radiation constant B.

3. The ground state population is small.

The key to the generation of the inversion can now be seen
in that the ‘bottleneck’ at n≈√Y lies near to but above n=2
so that the resonance level is strongly pumped by the states
immediately above, predominantly by collision during the
cascade. The ground state on the other hand is dominantly
pumped by radiative transitions from the states
immediately above it, n=2, 3 and a smaller contribution
from the high lying states.

We can identify the condition for the onset of inversion in
terms of a relationship between the density Z-4 Ne and the
temperature Y

Y 20 40 100 150

Z-4 Ne 3.7×10-7 7.4×10-7 1.2×10-6 1.5×10-6

Table 1. Limiting density parameter Ne in dimensionless units.

As the temperature of the plasma decreases (Y increasing)
the value of Ne required to generate the inversion must
increase. However the definition of Ne is itself quite
strongly temperature dependent, eqn.(1), and the necessary
electron density in fact decreases as can be seen from the
data in Table 2. This reflects the strong increase in the
collisional cascade recombination rate with decreasing
temperature, whereas the radiative recombination rate to
the ground state increases more slowly.

Z-2 kT 0.68 0.34 0.136 0.091
(eV).

Z-7 ne 1.25×1015 8.86×1014 3.64×1014 2.47×1014

(cm-3)

Table 2. Limiting density ne in practical units.

We note however the importance of the limit imposed by
degeneracy at high Z and low temperature on the data in
Table 1.
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