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Introduction
Streak cameras are ideally the best instruments to directly
investigate transient and ultrafast phenomena, which occur
in laser-matter interaction experiments, where the duration
of the optical or X-ray emission (~100 fs or less) is
comparable with the timescale for the structural
arrangement of the ionic lattice [1]. Thus, the basic idea of
time resolved diagnostics is of enormous appeal for the
progress and understanding of non-equilibrium and
ultrafast structural phase transitions [1]. This is particularly
relevant in view of new facilities (such as free electron
lasers and high harmonic sources), which are being
commissioned and will provide high photon fluxes at the
femtosecond timescale. In the 1990s conventional streak
camera technology has been pushed to the 500 fs level, [2,3]

but at the expense of any reasonable dynamic range, thus
limiting its applicability to selected applications. Still, such
temporal resolution is very far from the ultimate limit of
100 fs, which has been predicted for high-speed imaging
based on streak camera technology [4].

Here, we present a state-of-art design of a novel streak
tube concept able to achieve the breakthrough 100 fs time
resolution without the drawbacks of conventional streak
camera technology. This work concentrates on the
analytical description of the principle and it is based on
the numerical simulations performed by Jaanimagi [5], where
this idea was originally first presented. The engineering
design along with the preliminary stage of fabrication and
calibration procedures is presented as well.

Many factors contribute to the time resolution limit in
streak cameras based on electron focusing optics. The most
important ones are the limit t due to the upswept image of
the input slit, the electron transit time dispersion td (even if
electrons are emitted at the same time at the photocathode,
differences in their initial energy make the faster electron
to arrive at the recording device earlier than the slower
ones) and the space charge broadening, tsp of the electron
bunch due to Coulomb repulsions. While the static image
contribution to the time resolution can be easily controlled
by using a narrow input slit and high spatial resolution

phosphors on the back of the deflecting plates, the other
two effects are much more difficult to minimize. It can be
shown, however, that in many relevant applications transit
time dispersion is the most important limiting factor in
determining the ultimate time resolution of the streak
camera [5].

As discussed by Jaanimagi [5], compensation of the transit
time dispersion can be achieved with a symmetric double
cylindrical deflector analyzer (DCDA), as shown in figure 1.
This configuration (which we will refer as ‘S-optics’) is in
some respect one of the simplest electron optics to
compensate for the flight time dispersion, since it only uses
electrostatic fields. Typically, the electrons with kinetic
energy Ek and energy distribution ε can be selected and
confined to the near median ray trajectories within a
DCDA, where the potential of inner cylinder V1 is higher
than that of the outer cylinder V2, and satisfies,

(1)

Non-relativistically, electrons will travel through the
concentrically cylindrical tube and arrive at the first
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Figure 1. The ‘S-optic’, comprising of a slot photocathode
electron accelerator and Double Cylindrical Deflector
Analyzers in-series.



focusing node at the angle of rotaion ~127.3º, then the
second node at the angle 254.6º, etc. Therefore the
conceptual design of ‘S-optics’ as illustrated in figure 1
includes the rotation of anticlockwise for 254.6º, and then
the clockwise for 254.6º sequentially.

However, a complete study of this streak camera design
must also include the contribution of from the accelerating
field at the photocathode. In this device the electrons
emitted from the photocathode are accelerated but acquire
positive, dispersion, meaning that higher energy electrons
arrive earlier at the end of the accelerating section than
slower electrons. The DCDA is then used to introduce a
negative dispersion and compensate for the positive
negative dispersion generated during acceleration.

Here, our effort is to investigate the feasibility and limit of
applicability of such ‘S-optic’ configuration using simple
analytical modeling, which is then validated with more
sophisticated numerical calculations.

Analytical investigation

Diode
The ‘S-optics’ comprises a photocathode electron
accelerator or a photodiode, attached to the entrance of
the DCDA, to convert the optical or X-ray photon pulses
into the electron pulses. The electron motion in the diode
can be simply investigated using the idealized model of
figure 2, where the cathode is assumed at ground (0 V) and
the anode at the potential of 15 kV and separated by
20 mm. In a 1D geometry, the surfaces of the cathode and
anode are assumed to be infinite, therefore any edge effect
is negligible. For an electron starting at t=0 with null
energy, the non-relativistic calculation yields,

(2)

Where t is the time of flight, me is the electron mass, s is
the distance between the cathode and anode, and V0 is the
potential difference across the diode.

If we now consider an electron starting with energy ε, the
non-relativistic electron flight time becomes,

(3)

When ε<<eV0, which is a typical case here (ε is at most a
few eV), we have for the time dispersion,

(4)

Using equation (4) we can easily calculate the difference of
time of flight to cross the diode between an electron with
initial energies of 1 eV, 10 eV or 100 eV and an electron
with null starting energy. In Table 1, we compare our
analytic results with numerical calculations either
performed by Jaanimagi [5] or by the commercial package
CST Particle Studio [6]. Both the numerical calculations
include fully relativistic electrons (note that in Table 1, the
negative sign indicates the positive dispersion).

Table 1. Flight time dispersion calculation in Diode.

ε-Energy Equation 4 CST-PS Jaanimagi
difference (eV) (ps) (ps) (ps)

1 -4.478 -4.473 -4.478

10 -14.035 -14.027 -14.031  

100 -43.126 -43.087 -43.091  

We notice that our analytic results compare very well with
the numerical results for electrons with initial energies 
<10 eV. When the initial energy increases above ~100 eV,
the relativistic effect becomes important, and the difference
between our calculation and the two numerical results is
larger than 30 fs.

Double cylindrical deflection analyzer
From the results discussed in the previous section, we see
that energy differences as small as 0.0067% in the initial
electron energy (1 eV compared to the final kinetic energy
of 15 keV) would lead to ~4.5 ps dispersion at the end of a
20 mm travel distance. The double cylindrical deflection
analyzer (DCDA) is implemented to compensate for this
time dispersion.

The electron motion in DCDA can be described as [7],

(5) 

Where the equation can be solved for electrons moving
near the median ray R = R0 + ∆R with energy distribution
Ek = Ek0 + ε, assuming angular momentum, meR

2ω
conservation. In equation (5) E(R) is the electric field at
the radius R. The following initial conditions are applied,
and Ek0 is restricted by the condition given in equation (1).

(6)

(note t=0 corresponds to the time the electron start its
travel in the DCDA). The solution of the electron radial
motion is,
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Figure 2. The electron motion in a photodiode.
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(7)

The electron with distribution ε will arrive at the
intersection of the median ray, ∆R = 0, when 

(8)

And in the limit of ε << Ek0 we get,

(9)

The electron motion described by equation (9) is illustrated
in figure 3, where electron entering into a DCDA with
certain divergent angle will converge at its focal points per
every ~127.3º  Considering

and the average value of

for Lambertian distribution, the dispersion generated by
DCDA is given by,

(10)

Differently from equation (4), this dispersion is negative
(with positive sign, indicating that faster electrons arrive
later than slower ones, since the travel path is longer for
faster electrons) and this property can be utilized to
compensate for the electron pulse dispersion generated by
the diode acceleration at the photocathode. However, since
the kinetic energy 15 keV is not anymore small compared
to electron rest energy mec

2 ≈ 0.511MeV, relativistic effects
must be taken into account,

In Table 2, we compared the results obtained from
equation (10) and Jaanimagi [5] numerical calculations with 
R~206.88 mm >> s~20 mm, including the relativistic
correction γ-1 ~0.9852. We notice very good agreement
between the two calculations for various initial electron
energies.

Table 2. Flight time dispersion calculation in DCDA.

ε-Energy Results from Jaanimagi 
difference from Eq.(10)

the median ray (eV) (ps) (ps)

1 0.431 0.431

4 1.724 1.724

10 4.309 4.313

40 17.236 17.272

Combined system of photodiode and DCDA
From the previous discussion, the photoelectrons are initially
accelerated to a potential V0 in a short distance s, then travel
in a DCDA near the median ray, so that the overall time
spread in the combined system can be calculated as the sum
of equation (4) and equation (10), where Ek0 = γ-1eV0.

(11) 

According to equation (11), we can always choose a specific
R, which is close to the median ray R0, to minimize the
overall time spread in diode and DCDA, meaning we are
searching for the time difference τ(ε) ≈ 0. However any
electron pulse has certain energy distribution at the most
probable energy, so we are targeting to find the minimum
time spread at a give electron probable energy distribution.

Figure 4. Initial energy distribution.

The most probable electron initial energy distribution from
a typical photocathode, p(ε), is given by Jaanimagi [5] in
figure 4. It has an asymmetric feature, peaks approximately
at 0.5 eV, drops rapidly at the lower energy edge, falls
down to 20% of the peak density at ~2 eV along with a
long higher energy tails.
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Figure 3. The electron motion in a typical concentric double
cylindrical deflection analyzer.



From equation (11), we have 

(12)

At an acceleration field of 15kV/3mm, numerically we
have τ = –0.00168492 • ε1/2 + 1.30127 × 107 • R • ε in SI
unit, and for convenience, we can choose 1ps, 1mm and
1eV as the units of the time, distance and energy
respectively, so the transition time is denoted as 
τ = –0.674426 • ε1/2 + 0.00208486 × 107 • R • ε.

Again from equation (12), the minimum value is given by
τmin = –k1

2/4Rk2 (= –0.238 ps), which is a negative value
close to τ(ε) ≈ 0 and occurs when the condition

(= 229 mm) is satisfied, this could be a simple method to find
an optimal value for R approximately. More over, a given τ
can be solved for a ε, and k1 and k2 are constants that only
depend on the geometry of the systems (by equation (11)).
The energy probability distribution function p(ε) can be thus
expressed as a function of τ, p(ε-1(τ)) ⇒ ƒ(t). We adopted a
more generalized relation of τ and ε from Read [8],

(13),

where the angle θ1 is emission angle (from the
photocathode normal) of the ejected electrons and θ2
refers to its projection in the non dispersive direction (i.e.,
with respect to the mid plane of the DCDA of figure 1).
The constants k1, k2, k’1, k’2 are defined for a specific
geometry of the problem. Assuming these given in terms
of R, we can then evaluate the probability distribution
functions ƒ(τ) (data not shown), and find its FWHM ∆τ,
as a function of R, as what is plotted in figure 5. It is clear
that in order to compensate the time spread generated by
the acceleration field of 15 kV in 3 mm, the compensator
scale of R=250-300 mm would be the optimal values.

Figure 5. Dependence of the time spread ∆τ on the DCDA
compensator radius R.

Through the method we described in figure 5, we eventually
obtain the optimal value of R, which is associated with the
minimum time spread ∆τ of the electron pulse. In figure 6,
we plot the probability distribution at the optimum value of
R=275 mm (for an acceleration field of 15 kV over 3 mm),
and ∆τ is ~90 fs, which indicates a breakthrough to <100 fs
time resolution is achievable.

Engineering design for the X-ray streak camera
Based on our analytic calculation and Jaanimagi’s
simulations, we have completed a full engineering of the
novel ‘S-optics’ streak camera. The three dimensional view
of this type of streak camera including two CDA in series
to form the ‘S-optics’ shape is illustrated in figure 7.

The photocathode along with the acceleration slot are
anchored at the entrance of the compensator, where we
nominal design for the acceleration field is set at V0~5 kV
over ~1 mm. (just below the break down field). The
divergence of the electron beam and its position at the
entrance of the DCDA is determined by a slit 50 µm slit,
that can be adjusted to select the optimal compensator
radius R~50 mm (from equation 11 or 12). Here, this value
for the middle radius is smaller than our previously
analytic results (229 mm) due to the different choice of the
acceleration voltage and dimension at the photocathode.

The electron pulses are entering through the entrance slit,
travelling through four focusing nodes in the ‘S-optics’,
then passing through an exit slit with width of 10 µm into
a deflection and focussing region which contains
conventional streak camera optics and detection systems.
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Figure 6. Probability distributions of the time delay τ for the
value of optimal R=275mm that gives the minimum width
∆τ ~90 fs.

Figure 7. 3D view of ‘S-optics’ DCDA streak camera.
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Discussion
Our analysis so far is mainly pertinent to single electron
motion or non-interaction electron pulses. This is typically
the case for low signal levels, when the photon number
arriving at the photocathode is small, thus generating a
small number of photoelectrons. However, when the signal
increases in intensity, the interaction between the electrons
could become important and essentially influence the
motion and the time spread of the electron pulses,
especially in the diode region, where the fields are strong
and the electron current is confined in a small volume. The
self interaction of the electrons among themselves is often
referred to as ‘space charge’. The electric potential in the
diode is then given by Poisson’s equation

,

where the cathode is assumed to freely emit electrons for a
constant current flow crossing diode (1D approximation),
with V(x) and ne(x) the potential and electron density at x
(0<x<s). Assuming that the electrons are emitted with null
initial energy, we get [9]

(14)

and, when the initial energy is , the transient
time changes as

(15)

So the time dispersion for the space charge taken into
account can be calculated from equation (14) and (15)
numerically, which is different with the formula in equation
(4) However, theoretically we can always adjust the DCDA
compensator scale size R to minimize the overall time
spread of the electron pulses. Thus, the equation (11)
becomes to

(16)

Implementation of the previously analytic conditions
eV0=15kV and s=3mm, leads to the optimal R=229mm
and τ ≈ –0.238ps (from equation (11)); under the same
conditions, we got τ ≈ –7.7ps from equation (16), which is
obviously far from being compensated. However, applying
the method we used to obtain the optimal R in non-space
charge case will lead to a negative value. Then, we simple
set τ ≈ 0, and get R=7.65m >> 229mm! Apparently, space
charge could be one of the worst factors to resist
improving the time-resolution of S-optics. Therefore we
will need to avoid the photo-electron current in the
extraction field much too high and maintain the ‘S-optics’
running below the breakdown condition to reduce the
space charge effect.

Various commercial and private simulation programs
include the treatment for space charge. MAFIA -an earlier
particle tracking system to CST uses a particle in cell
(PIC) method, which models the electron pulse as a cloud
of charge spread over a number of meshing cells and
solves Poisson’s equation as the pulse progresses through
the simulation [6]. However, the program doesn’t work well
the application discussed here, since a large number of
mesh cells are required to achieve an ultimately sufficient
short pulse (~500 fs), which causes extremely long
computational times and large memory allocation.

B. Siwick approached to the space charge calculation using
Molecular Dynamics in his PhD thesis [10]. He implemented
a Barnes-Hut tree algorithm and a leapfrog integration
scheme to solve the ‘n electron’ system. It could eventually
be coupled with Jaanimagi’s calculation to evaluate
influence of the space charge in the ‘S-optics’. More over,
Qian and Elsayed-Ali applied a hydrodynamic model to
derive the effect of space charge in a field free region
analytically [11].

Here we proposed to design a novel steak camera that
clearly has the potential to achieve 100-fs time resolution.
It utilizes a combination of a modest extraction field at the
photocathode and a double cylindrical deflection analyzer
axial time-of-flight dispersion compensation with critical
transverse energy selection. Currently, the detailed
engineering drawing have been completed, and the
Machine shop in University of Oxford is ready to start the
machining and assembly. In the following year, our
laboratory expects to perform the static focus test as well
as the temporal compression calibration and performance,
and ultimately we plan to deliver the first prototype of the
snake streak camera within feasible future.
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