
Introduction

High-power lasers and plasmas may be used to accelerate
electrons by electric fields that are orders of magnitude
greater than those achievable using conventional
methods [1]. An intense laser pulse is used to drive a wave in
an underdense plasma and, for sufficiently large fields,
non-linearities lead to collapse of the wave structure
(‘wave-breaking’) due to sufficiently large numbers of
electrons becoming trapped in the wave.

Hydrodynamic investigations of wave-breaking were first
undertaken for cold plasmas [2,3] and thermal effects were
later included in non-relativistic [4] and relativistic
contexts [5–7] (see [8] for a discussion of the numerous
approaches). However, it is clear that the value of the
electric field at which the wave breaks (the electric field’s
‘wave-breaking limit’) is highly sensitive to the details of
the hydrodynamic model.

Plasmas dominated by collisions are described by a
pressure tensor that does not deviate far from isotropy,
whereas an intense and ultrashort laser pulse propagating
through an underdense plasma will drive the plasma
anisotropically over typical acceleration timescales. Thus, it
is important to accommodate 3-dimensionality and allow
for anisotropy when investigating wave-breaking limits.
The sensitivity of the wave-breaking limit to the details of
the plasma model suggests that it could depend on the
anisotropy of the pressure tensor.

One method for investigating the wave-breaking limit of a
collisionless anisotropic plasma is to employ the warm
plasma closure of velocity moments of the 1-particle
distribution ƒ satisfying the Vlasov-Maxwell equations [7].
Successive order moments of the Vlasov equation induce
an infinite hierarchy of field equations for the velocity
moments of ƒ and at each finite order the number of
unknowns is greater than the number of field equations.
The warm plasma closure scheme sets the number of
unknowns equal to the number of field equations by
assuming that the terms containing the third order centred
moment are negligible relative to those including second,
first and zeroth order moments.

Our aim is to uncover the relationship between
wavebreaking and the shape of ƒ. In general, the detailed
structure of ƒ cannot be reconstructed from a few low-
order moments so we adopt a different approach based on
a particular class of piecewise constant 1-particle
distributions. Our choice of distribution, although
somewhat artificial, reduces the Vlasov equation to that of
a boundary and combined with the Maxwell equations

yields an integral for the wave-breaking limit in terms of
the shape of the boundary.

Our approach may be considered as a multi-dimensional
generalization of the 1-dimensional relativistic ‘water-bag’
model employed in [5] and details of the derivation of the
formulae given here may be found in [9].

Units are used in which the speed of light c = 1 and the
permittivity of the vacuum ε0 = 1.

Electrostatic oscillations
We are interested in the evolution of a thermal plasma
over timescales during which the motion of the ions is
negligible in comparison with the motion of the electrons.
We assume that the ions are at rest and distributed
homogeneously with constant number density nion in the
laboratory frame. Rather than attempting to solve the
Vlasov-Maxwell system in its full generality we adopt a
simple class of distributions that captures some of the
properties of plasmas near wave-breaking.

In what follows, a point in Minkowski spacetime is
denoted x = (x0, x1, x2, x3) where x0 is inertial time in the
laboratory frame and (x1, x2, x3) are Cartesian coordinates.
An electron at the event x with relativistic 3-momentum 
p = (p1, p2, p3) is represented by the point (x, x• = p/m) in
‘relativistic phase space’ where x• = (x•1, x•2, x•3). We consider
distributions for which ƒ = α is a positive constant inside
some region of ‘relativistic phase space’ and ƒ = 0 outside.
In particular, the boundary of the support of the map x• to
ƒ(x, x•) (the “water-bag”) is topologically equivalent to the
2-sphere. We are interested in the behaviour of non-linear
electrostatic oscillations along x3, and to proceed further
we employ distributions axisymmetric about x•3 whose
pointwise dependence in spacetime is on the wave’s phase 
ζ = x3 – vx0 only, where 0 < v < 1 (this is sometimes called
the ‘quasi-static assumption’).

Points on the boundary of the ‘water-bag’ are labelled
locally by ξ = (ξ1, ξ2), where 0 < ξ1 < π, 0 ≤ ξ2 < 2π. The
shape of this boundary is specified by a single function
A(ξ1), while its transverse extent is governed by a constant
R > 0. The evolution of the boundary is described by a
function µ(ζ) over spacetime, and describes electrons with
energy in the wave frame m(µ+A)/γ, where m is the
electron’s rest mass and γ = 1/√

——–
1 – v2 is the Lorentz factor

of the wave’s phase speed v. For the model discussed here,
no electron described by ƒ is moving faster along x3 than
the wave and wave-breaking occurs when any electron
‘catches up’ with the wave.
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It may be shown [9] that, in the absence of external
electromagnetic fields and without further approximation,
the Vlasov-Maxwell system leads to

and

where q < 0 is the charge on the electron.

The form of the 2nd order autonomous non-linear
ordinary differential equation (1) for µ is fixed by
specifying the generator A(ξ1) of the ‘water-bag’ subject to
the normalization condition (2).

Electrostatic wave-breaking
The form of the integrand in (1) ensures that the
magnitude of oscillatory solutions to (1) cannot be
arbitrarily large. For our model, the wave-breaking value
µwb is the largest µ for which the argument of the square
root in (1) vanishes,

because µ < µwb yields an imaginary integrand in (1) for
some ξ1. The positive square root in (3) is chosen because
m(µ+A) is the relativistic energy of electrons described by
the ‘water-bag’ and therefore positive, and it follows 
µwb + A(ξ1) > 0.

The electric field has only one non-zero component E (in
the x3 direction) where 

and the wave-breaking limit Emax is obtained by evaluating
the first integral of (1) between µwb where E vanishes and
the equilibrium1 value µeq of µ where E is at a maximum.
Using (2) to eliminate α it follows µeq satisfies

with

since α, v > 0. Equation (1) yields the maximum value
Emax of E,

Example
To illustrate use of the above, we determine a wave-
breaking limit for a nearly cold plasma whose
distribution’s transverse extent is much larger than its
longitudinal extent.

Let A(ξ1) = –a cos(ξ1) where a is a positive constant
characterising the longitudinal extent of the distribution.
Using (7) it follows

where χ = –cos(ξ1) and equation (5) yields

Equation (3) may be written

and for a,R,γ satisfying
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1 Note that the equilibrium of µ need not coincide with the plasma’s thermodynamic equilibrium.



the maximum of h(χ) = –aχ + γ = 1/√
——————–

over
–1 ≤ χ ≤ 1 coincides with a turning point of h. It follows

For a << R << 1 equations (8, 9, 12) yield

where mcwp√
——––
2(γ – 1)/|q| is the usual relativistic cold plasma

wave-breaking limit of E (see, for example, [10]) and 
wp = √

——––––––
is the plasma angular frequency. Note

that the speed of light c and the permittivity ε0 of the
vacuum have been restored. The parameter R may be
eliminated in favour of an effective transverse
‘temperature’ T⊥eq defined as

where P11
eq, P22

eq are components of the relativistic pressure
tensor in the laboratory frame derived from the
‘equilibrium’ water-bag given by µ = µeq (see footnote 1 on
p. 111) and kB is Boltzmann’s constant. It follows

where the speed of light c has been restored.

Conclusion
We have developed a method for investigating the
relationship between the shape of a 1-particle distribution
and electrostatic non-linear thermal plasma waves near
breaking. An approximation to the wave-breaking limit of
the electric field was obtained for a particular
axisymmetric distribution.

Further analysis of (7, 5, 3) will be presented elsewhere.
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