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Abstract
The effects of inverse bremsstrahlung (IB) heating on
transport in nanosecond laser-plasma interactions are
elucidated in the presence of magnetic fields. IB results in
the distribution function tending towards a super-
Gaussian. The theory of transport will be derived for this
distribution. In the resulting theory the classical transport
coefficients of Braginskii need to be modified and new
ones must be introduced.

Introduction
Using the appropriate theory to describe transport in a
long-pulse laser-plasma interaction is essential to achieving
a predictive modelling capability for inertial confinement
fusion. In such interactions large (mega-gauss strength)
magnetic fields are expected to be generated around the
laser spots by the thermoelectric mechanism [1]; these are
caused by non-parallel electron density and temperature
gradients. Kinetic effects, such as non-local transport, are
also expected to be important [2,3]. Therefore the effects of
both non-Maxwellian distributions and B-fields on
transport must be accounted for.

Classical transport theory [4] relies on the isotropic part of
the electron’s distribution function being Maxwellian and
is commonly employed in magnetohydrodynamic (MHD)
modelling of long-pulse interactions. Kinetic effects must
be considered when this is not the case. Non-local
transport, particularly non-local heat flow, is very
important in long-pulse interactions. The effect of
magnetic fields on non-locality has been discussed
previously [5]; additionally the coupling between magnetic
field dynamics and non-local heat flow has recently been
elucidated experimentally and theoretically [6,7].

A second, less often considered, kinetic effect can play a
role in long-pulse interactions. This is the distortion of the
isotropic part of the electron’s distribution function by
inverse bremsstrahlung (IB) laser heating. IB heating is
dominant at moderate laser intensities well away from the
critical surface. IB causes the isotropic part of the electron
distribution function to approach a Langdon distribution 
f0 ∝ e-v5 in the limit of strong heating [8]. Electron-electron
collisions tend to relax the distribution towards a
Maxwellian so the more general super-Gaussian
distribution (also known as the Dum-Langdon-Matte, or
DLM, distribution) is more appropriate, i.e.: f0 ∝ e-vm

where  2 ≤ m ≤ 5 in transport calculations. A theory of
transport has been derived for this distribution. This has
been looked at in the context of turbulence [9] but not for
laser-plasmas.

Classical transport theory
The transport relations used to close the MHD equations are
given by the classical transport theory originally proposed by
Braginskii [4] and later corrected by Epperlein & Haines [10,11].
The classical Ohm’s law and heat flow equation are given by:

(1)

(2)

Here α, β and κ are the classical transport coefficients. α is the
resistivity, β is the thermoelectric coefficient, and the thermal
conductivity is κ. The magnetic and electric fields are B and E.
The electron pressure is given by Pe, the electron temperature
and number density by Te and ne, the current by j and the heat
flow by q. Equations (1) and (2) are derived by taking
moments of the Vlasov-Fokker-Planck equation (neglecting
electron inertia and expanding the distribution function in
Cartesian tensors). The isotropic part of the distribution
function f0 is assumed to be a Maxwellian and the anisotropic
part f1 (responsible for flows and transport) is assumed to be
small. If f0 departs strongly from Maxwellian then classical
transport theory is not valid. The transport equations are
crucial to plasma modelling. The heat flow equation closes the
MHD equations and in doing so determines the energy flow
in the plasma. Ohm’s law, in conjunction with Faraday’s law,
gives the rate of change of the magnetic field.

The transport coefficients are usually expressed in
dimensionless form in the following way:

(3)

The collision time τB is that for angular scattering between
ions and electrons moving at the mean averaged speed for
the Maxwellian at a given point. In a magnetised plasma
the B-field provides a unique axis whereby transport is
different parallel to this axis as compared to perpendicular
to it. Thus the components of the transport coefficients
are described with reference to the magnetic field and the
driving force behind the transport (s).

(4)

This defines the components of the general transport
coefficient (η) with reference to b the unit vector in the
direction of the B-field. In the case of the resistivity α the
sign of the last term is negative and s=j. For the
thermoelectric tensor β and thermal conductivity κ the
sign is positive and s=∇Te.
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Transport theory for a super-Gaussian
The corresponding equations to (1) and (2) when f0 is a
super-Gaussian are [12]:

(5)

(6)

If the distribution function is non-Maxwellian then
Onsager symmetry breaks down [13]. In this case the
transport coefficient appearing in the term proportional to
the temperature gradient is different in equations (5) and
(6). In classical transport theory – when the distribution is
Maxwellian – it is the same and equal to the
thermoelectric tensor. There is also the need to introduce
two completely new transport coefficients γ and φ. These
result in the heat flow being dependent on the pressure
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Figure 1. Transport coefficients α, β‚ and κ for a super-Gaussian (m=5) and a Maxwellian (m=2).



(and so number density) gradient and in a more
complicated dependence of the electric field on the
pressure gradient. The new coefficients are expressed in
dimensionless form according to:

(7)

The transport coefficients for a super-Gaussian are
compared to those for a Maxwellian in figures 1 and 2. In
general they differ from one another by up to an order of
magnitude. Note that α∧ and β⊥ approach different
asymptotes to the Maxwellian case in the limit of high
Hall parameter.

Conclusions
A transport theory has been derived for a super-Gaussian
distribution in the presence of magnetic fields. This theory
shows a significant departure from Braginskii’s classical
transport theory; the transport coefficients differ by up to
an order of magnitude. Therefore, any effects which depend
on the transport coefficients (the Nernst effect [14], the
Tidman-Shanny instability [15]) may be significantly altered.
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Figure 2. Transport coefficients γ and φ for a super-Gaussian (m=5) and a Maxwellian (m=2).


