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Introduction
The electric fields that occur to balance electron pressure
gradients and maintain quasineutrality in collisional
plasmas generally lead to magnetic field generation. In local
equilibrium, magnetic field generation can occur by the
well-known thermoelectric mechanism [1,2], B ∝ ∇Te × ∇lnne,
in the presence of gradients in both electron temperature, Te,
and number density, ne.

The magnetic fields that can develop in such plasmas can
be significant [1,3], in that their presence affects the
magnitude and direction of the particle fluxes, e.g. electron
heat flux, and therefore the long time evolution of the
system. This evidently has consequences for inertial fusion
energy applications, as the coupling of the laser beams
with the walls or pellet and the development of hot spots
are all critical to the uniformity of the implosion.

In non-equilibrium, laser heated, scenarios, a number of
other magnetic field generating mechanisms can arise even
in the absence of density gradients. Non-local fluxes,
arising when the gradients in the macroscopic quantities
are small compared with the mean-free-path of a thermal
electron, can result in magnetic field generation [4]. The
spatially dependent distortion of the electron distribution
function due to inverse bremsstrahlung absorption of laser

momentum [5] and anisotropic pressure generated by the
electron quiver in the laser field [6] can also be sources of
significant magnetic fields.

Magnetic fields generated by laser speckles
Simulations were run of a single, linearly polarized laser
speckle in an underdense plasma, using the Vlasov-Fokker-
Planck code IMPACTA. The heating profile was a Gaussian
spot of 1/e radius 5 µm, with x polarization and with 
Iλ2 = 1 × 1015 W cm-2 µm2. The plasma was a homogeneous
CH plasma with an electron temperature of Te = 1 keV, and
with an electron number density of ne = 1 × 1021 cm-3.

As can be seen in figure 1, magnetic fields are generated in
the plasma around the laser spot, due to the combined
effects of anisotropic electron distribution function and non-
local electron fluxes. Although the laser spot is circularly
symmetric, the linear polarization (horizontal with respect to
the pictures) results in the generation of anisotropic pressure.

The field structure is a quadrupole field. The shape of this
quadrupole evolves with time due to the combined effects
of (non-local) electron transport, and feedback of the
magnetic field in rotating the anisotropic pressure. These
result in a magnetization of the plasma in less than 50 ps,
as shown in figure 2.
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Figure 1. The magnetic field structure at various times.
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Figure 2. The magnetic field magnitude as a function of
time.

The effect of this anisotropy and the magnetic fields on the
transport is dramatic. In figure 3, the scalar heat flux is
shown at the end of 50 ps. From the circular heating
profile, an azimuthally symmetric heat flow would be
expected, without the effects of magnetic field or
anisotropic pressure. Here the heat flow has a strong
angular dependence, and this results in redistribution of
internal energy in a very non-uniform manner, as shown in
the non-symmetric temperature distribution after 50 ps.
This also affects the hydrodynamics of the system, as the
gradients then evacuate the ions non-symmetrically.

The Vlasov-Fokker-Planck equation and
magnetic field generation
The Vlasov-Fokker-Planck (VFP) equation is a
conservation equation in 6D phase-space, with a smooth
electron distribution function f representing a statistical
average of the particles within a differential volume
element. It includes the effect of both the conservation of f
in the presence of macroscopic electric, E, and magnetic,
B, fields, and the small angle Coulomb deflections of the
underlying inter-particle interactions.

To relate this equation to meaningful physical quantities,
velocity moments of the distribution function must be
taken, which in general are given by:

where v = |v|, and {v}1 denotes the tensor outer product of
v, applied l times. By applying these generalized moments
to the VFP equation, a chain of transport equations
occurs, relating a particular moment of order l to moments
of order l+1 and l–1, which for electrons is given by:

where Cei and Cee are the electron-ion and electron-
electron collision operators, and a heating operator, HIB,
representing the change in the electron distribution
function due to inverse bremsstrahlung absorption has
now been included. The electron-ion collision operator can
be approximately expressed in the Lorentz form, for a
single ion species background, as:

where A = Znie
4 ln Λ/8πε0

2me
2, Ze and ni are the ion charge

and density, and ln Λ is the Coulomb logarithm. Hence this
term disappears in the l=1, m=3 transport equation,
leading to a somewhat generalized form of Ohms law:
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Figure 3. The electron temperature and scalar heat flux after 50 ps laser heating.
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Note that the heating operator has no time-averaged effect
on vector moments. The term involving the cyclotron
frequency, ωc, is responsible for diffusion and advection of
the fields (i.e. the Nernst effect [2]). The other terms can be
sources of magnetic fields, but the most important is the
second term. This includes the thermoelectric, non-local
and anisotropic pressure magnetic field generating
mechanisms. This can be seen by isolating the relevant
terms, i.e. the second and third terms, and rearranging:

where for simplicity, the traceless part of the moment in
the electric field term has been neglected. Now, if this
equation is split into traceless and non-zero trace parts, the
latter yields an electric field:

which leads to non-local and thermoelectric magnetic field
generation through Faraday’s law [4]. The traceless part
leads to magnetic field generation due to electron pressure
anisotropy. To capture all these effects, which are
intricately coupled to each other, it is best to solve the VFP
equation combined with Maxwell’s equations.

IMPACTA
The code IMPACTA solves the VFP equation in two
Cartesian spatial dimensions. The angular information of
the velocity 3-space is expanded as a series of Cartesian
tensors [7], related to spherical harmonics, which are
eigenfunctions of the collision operators. In IMPACTA,
the series is truncated for rank 2 tensor objects, which is to
say that the effects of anisotropic pressure are retained. It
is an extension of the code IMPACT, described in [8].

In addition, ions are represented by a hydrodynamic
background, so that the expanded VFP equations for the
electrons is cast in the stationary frame of the ion fluid.
The code integrates the finite difference equations with an
implicit algorithm, which allows nanosecond timescale
physics to be studied. Inverse bremsstrahlung heating is
represented by a modified version of the Langdon
operator [5] to include the effect of the absorption on
anisotropic pressure [9].

Conclusions
The fast growth of strong magnetic fields has been
demonstrated, under fusion relevant conditions. Laser
speckles in the interaction with sub-critical plasma can
generate these fields, due to the development of electron
distribution function anisotropy resulting from oscillations
in linearly polarized electromagnetic radiation.

These magnetic fields and anisotropic distributions lead to
a spatially dependent inhibition of electron and ion
transport. This affects the long-term evolution of the
system, and may need to be considered in modelling of
fusion related scenarios.
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