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Introduction
It is crucial for the design and critical evaluation of
targets for inertial confinement fusion to thoroughly
understand the interaction of the laser radiation with
dense, strongly coupled plasmas. To accommodate the
symmetry conditions needed, the absorption of laser
energy must be carefully determined starting from the
early stages [1,2]. The absorption data for dense plasmas
are also required for fast ignition by ultra-intense
lasers due to creation of plasmas by the nanosecond
pre-pulse [3]. Least understood are laser-plasma
interactions that involve strongly coupled Γ>1 and
partially degenerate electrons. Such conditions also
occur in warm dense matter experiments [4,5] and laser-
cluster interactions [6,7].

The dominant absorption mechanism for lasers with
the parameters typical for inertial confinement fusion
is inverse bremsstrahlung. This problem was first
investigated by Dawson & Oberman for weak fields [8].
Their approach was later extended to arbitrary field
strengths by Decker et al. [9]. However, due to the use
of the classical kinetic theory, their results were
inapplicable for dense, strongly coupled plasmas. This
problem was addressed using a rigorous quantum
kinetic description applying the Green's function
formalism [10,11] or the quantum Vlasov approach [12].
However, these approaches are formulated in the high-
frequency limit which requires the number of
electron-ion collisions per laser cycle to be relatively
small. In the weak field limit, a linear response theory
can be applied and thus the strong electron-ion
collisions were also included into a quantum
description [13,14] in this limit.

For dense strongly coupled plasmas, the approach for
the evaluation of the laser absorption in both the high
and low frequency limits must be fundamentally
different. In the high-frequency limit, the electron-ion
interaction has a collective rather than a binary
character and the laser energy is coupled into the
plasmas via the induced polarization current. On the
other hand, binary collisions dominate laser
absorption in the low-frequency limit resulting in a
Drude-like formulation. At the intermediate
frequencies, both strong binary collisions and
collective phenomena have to be considered
simultaneously. Interestingly, such conditions occur for
moderate heating at the critical density of common
Ny:Yag lasers.

Here, we discuss a novel method to calculate
collisional absorption that bridges between the high-
and low-frequency limits and incorporates weak
collective interactions as well as strong binary
collisions. To this end, the interactions in the kinetic
equation are formally split into weak and hard
collisions. The former are equivalent to the average
Hartree field and can be considered as a linear
collective polarization response of the system to the
external field. The latter can be shown to be
equivalent to an average friction force between the
electron and ion fluids and can be treated as the
stopping power of ions in the electron fluid. This
statement is true for laser frequencies in the
important range around the plasma frequency, where
the electrons and ions have enough time to interact
as two fluids. Thus, the link between the two basic
energy absorption mechanism, the stopping power
and collisional absorption, is established. This 
allows one to apply well developed models for the
stopping power (see, e.g., Refs. [15-17]) to the problem 
of laser absorption.

One crucial improvement of our method that allows
avoiding the restrictions with respect to the laser
frequency is the transformation of the problem to the
generalized rest frame in which the electrons
distribution can be linearized. However, the latter is
not assumed to be the frame of the freely oscillating
electrons as in previous works [8-11], but is determined
by the driving field and the friction between the
electron and ion species. Therefore, the description of
the collective electron response using the expansion in
the electron rest frame is almost unchanged from
earlier approaches [9,12], but the use of the generalized
rest frame modifies the final result. The use of the
quantum mechanical formalism allows avoiding the
use of ad hoc cutoffs and the method stays reliable for
strong electron-ion interactions and degenerate
electrons. The agreement of our results with
molecular dynamics (MD) simulations [18-20] in the
parameter range examined validates the few
assumptions made in the derivations.
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Outline of the theory
Collisional absorption of laser energy is commonly
characterized in terms of a frequency-dependent
electron-ion collision frequency defined as [21]

(1)

where the brackets denote the average over one period
of the laser field. The collision frequency is therefore
determined by the electron current which is, in turn,
given by the first moment of the electron distribution
function. Therefore, quantum kinetic equation for the
electron distribution has to be solved using the
methods described in [23]. The resulting solution is

(2)

Here, νhc is the frequency of the hard collisions, ω0 is
the laser frequency, ωp is the plasma frequency, Sii is
the ion-ion structure factor, γ = [1 + (νhc /ω0)2]-1,
D(k,ω) is the RPA dielectric function and J’s are the
Bessel functions of the first kind [22,23]. The parameter 
α = (ω0ωp/2π2)(Ze2/mev 0

2) is proportional to the
charge number Z and inverse proportional to the
square of the free quiver velocity. In Eq.(2), the first
term describes the absorption due to the strong
collisions that corresponds to the Drude conductivity.
The second term describes the collective dynamic
absorption term due to the polarisation current.

Here, we will focus on the calculation of the hard
collision term. It is calculated using the stopping
power as

(3)

The hard-collision frequency given by the latter
formula can be represented using the Gould-DeWitt as
a sum of three contributions [15]

(4)

where the first term corresponds to the static T-matrix
representing the strong coupling, the second term is
the dynamic Lenard-Balescu contribution and the last
term is the static Born contribution that is subtracted
to prevent double counting. However, since the
dynamic effects in the total collision frequency are
already included in the polarization current
contribution, this form is inapplicable here, because it
contains the weak dynamic effects in the Lenard-
Balescu term whereas we are interested in hard-
collisions only. However, the last form is especially
useful since for small relative species velocities V < νth,
the stopping power is a linear function of the velocity
and it can be determined using the simple fit formula

where the collision frequency is given in thermal
units [15] and x = ZΓ3/2 is the dimensionless  similarity
parameter. To evaluate the hard collisions contribution
only, we subtract the Lenard-Balescu term that is given
by the simple integral

from the total expression given by the fit and thus
obtain the pure hard collision component νhc = νT – νB.

Results
As an illustrative example, we consider a case that was
most frequently addressed in the literature (see 
Refs.[18-24]), that is hydrogen plasma with ne = 1022 cm-3

and a laser field with ω0/ωp = 3 and ν0/νth = 0.2.
According to these conditions, the stopping power
was calculated using the combined model of Refs.
[15,24], i.e., νhc is given by the difference of the T-matrix
and the static Born terms. The ions can be treated
individually since Sii ≈ 1 even for the highest coupling
strength considered. As expected, all theories agree for
weakly coupled plasmas, but large deviations occur
for strong coupling. The classical description is clearly
not applicable for that case (see Ref. [22] for a 
discussion of other possible cutoffs). For a coupling
strength of Γ ≈ 1, the quantum theories of Refs. [11,12]

also start to disagree with the simulation data. This
behaviour can be traced back to the neglect of hard
collisions and their contribution to the definition of
the electron rest frame. As the hard collisions are self
consistently included and their effect on the rest frame
is considered in our analysis, we find excellent
agreement with data from MD simulations up to high
coupling strength. Plotting both contributions of
Eq. (2) separately reveals that the Drude term (hard
collisions) dominates for high coupling strengths and
defines here the shape of the curve. Thus, hard
collisions are essential to describe the collisional
absorption at high coupling strengths.

Figure 1. Collision frequency νei versus coupling
parameter Γ for a hydrogen plasma with ne = 1022 cm-3

and a laser field with ω0/ωp = 3 and ν0/νth = 0.2. Solid
line: Eq. (2); punctured lines: contributions of hard
collisions and polarization to Eq. (2); symbols: results of
numerical simulations.
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