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Introduction
Laser–driven two-electron systems remain a
challenging theoretical problem, particularly in the
intense-field limit, where few simplifications of the full-
dimensional time-dependent Schrödinger equation are
justified. High-accuracy intense-field ionization rate
calculations have a wealth of important applications. In
the experimental domain, accurate rate data may help
to overcome the well-known problem of determining
peak laser intensities. Additionally, the full-dimensional
integrations provide important guidance on the
reliability of simplified theoretical models.

In [1] we presented high-accuracy calculations of single-
ionization rates of helium at two optical wavelengths:
390 nm and 780 nm. We derived the intensity and
frequency scaling properties of the rates in terms of
simple laws derived from a ponderomotive-shifted
perturbation theory. We now extend the discussion of
these scaling properties with new calculations in both
the high-frequency and static-field limits. The first set
of calculations was performed at the 195 nm (UV) wave-
length over an intensity range 0 < I < 32×1014 W/cm2.
The second set of calculations was performed using
static electric fields, with strength E in the range 
0 < E < 0.4 atomic units [2]. In both cases, single-
ionization rates were obtained from the full-
dimensional numerical integration of the two-electron
time-dependent Schrödinger equation [3].

Figure 1 shows single-ionization rates from the 1s2

ground state of helium at UV and optical wavelengths,
together with those for static electric fields, as a function
of intensity. When plotted as 1/ln2(Rate), strong linear
trends become apparent. In the following sections, we
derive formulae for the intensity dependence of the rates
over a wide range of intensities.

Turning to the calculations of static-field ionization
rates, we uncover two transition points of interest:
E = 0.175 atomic units (au) and E = 0.38 au. At 
E = 0.175 au, the ionization rates undergo an abrupt
change in functional form, with the sudden onset of a
rapidly increasing component which scales as E4. The
electric field strength of 0.2 au is the threshold intensity
for the onset of above-barrier ionization (ABI)
according to Scrinzi et al [5]. ABI is an intense-field
process in which the Coulomb potential is suppressed
by the electric field, to the extent that the electron can
escape above the potential barrier. As shown in figure

1, the failure of the ADK tunneling formula to model
the static-field ionization rate data accurately in this
region is particularly pronounced. For field strengths 
E < 0.38 au, the helium atom responds adiabatically to
electric fields that are ramped-on sufficiently gently.
Above E = 0.38 au, we have difficulty producing an
adiabatic atomic response for any length of ramp-on.

Ionization rate scaling laws derived from
ponderomotive-shifted perturbation
theory
In [1] we presented simple intensity- and frequency-
scaling laws for single-ionization of helium at optical
wavelengths. At the simplest level, ionization rates are
given by the classic perturbation theory power law 

(1)

where A is a constant, d0 is an effective dipole
moment, I is intensity in units of 1014 W/cm2, and N is
the number of photons required for ionization, given
by IP/ω, where IP is the ionization potential for single-
electron ionization, 0.903724 au, and ω is the laser
frequency in atomic units. We now modify the
ionization potential so that it incorporates the
ponderomotive shift, UP, given by 0.053362I/4ω2,
where I is intensity in units of 1014 W/cm2 (as in
Wigner-Brillouin perturbation theory [4]). Our aim is to

Figure 1. Numerically integrated single-ionization rates
of helium. Multiphoton rates at 195 nm, 390 nm and 
780 nm are shown together with cycle-averaged static-
field rates, and with ADK tunneling rates.
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3 provide a simple power law, which bears out the
scaling behaviour of the rates, whilst avoiding the
complicated matrix elements and expansions
encountered in classic perturbation theory.

In the case of the 390 nm wavelength, ω390 = 0.11683 au,
and so the number of photons required to ionize is
given by N0(I) = (IP + UP)/ω390 = n390 + ξI, where n390

= IP/ω390 = 7.735 and ξ = 0.053362/4ω390
3 = 0.4464.

The ionization rate may then be written as

(2)

We then choose A = 548000.0 and d0 = 0.138 to
provide the best fit to the non-resonant trends in the
390 nm data. Figure 2 shows the predictions of
equations (1) and (2) compared to the numerically
integrated rates at 390 nm.

As can be seen in Figure 2, this ponderomotive-shifted
perturbation theory power law works well up to an
intensity of around 9.0×1014 W/cm2, an order of
magnitude higher than the intensities at which standard
perturbation theory provides an accurate model.

Having established the success of ponderomotive-
shifted perturbation theory (equation 2) at the 
390 nm wavelength, we now attempt to generalize the
power law, so that it may be applied at a general
frequency ω, where the number of photons to ionize is
given by

Changing units from ω to R = ω390/ω, this may be
written as

Henceforth, we use the scaled intensity I
–

= IR2, so
that

Using the same values for the parameters A and d0, the
power law may then be recast in the form

(3)

This formula now successfully models the 780 nm data
well over the same range in I as was achieved at 390 nm[1].
At 780 nm, R = 2, so that the number of photons to
ionize is doubled when going from 390 nm to 780 nm.

Application of scaling laws at 195 nm, 
390 nm and 780 nm
The power laws of the previous section reveal the
frequency scaling of the ionization rates, but several
features of the rate curves in figure 1 are not directly
apparent from equation (3). In particular, the vertical
displacements of the rate curves from the static-field
rates scale as the square of the laser frequency.
Furthermore, the ordinate measure 1/(ln2(Rate)) is nearly
linear in intensity. We now introduce a new functional
form for the ionization rates, which is applicable at high
intensities, beyond those at which ponderomotive-shifted
perturbation theory provides an accurate model of the
ionization rate data. The functional form is

(4)

which is simply an expression of the observation that
1/(ln(Rate))2 is linear in intensity. In figures 3 to 5, the
straight lines therefore correspond directly to 
(a0 + a1I)/R2.

Values of a0 obtained from figures 3-5 are shown in
table 1.

λ (nm) Value of a0 in figure

195 0.0009882

390 0.0009900

780 0.0009800

Table 1. Values of a0 for each wavelength as given in
figures 3 to 5.

As can be clearly seen, a0 is largely insensitive to
change in laser wavelength, and therefore the
displacement between each of the rate curves, a0/R2,
scales as the square of the laser frequency.

Figure 2. Numerically integrated single-ionization rates
of helium at 390 nm compared to those given by
equations (1) and (2).

Figure 3. Single-ionization rates of helium at 195 nm as
a function of intensity.
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Although a0 is insensitive to wavelength, it is sensitive
to changes in ξ [2]. For example, in the R = 1 case, a0 is
almost linear in ξ. If ξ were half its actual value of
0.4464, then a0 would be reduced to 0.00051. For 
R = 2, it would be reduced to 0.0006, and at R = 0.5 it
would be reduced to 0.00038. Therefore, the vertical
separation gives us a measure of the derivative of the
ponderomotive shift with respect to scaled intensity,
namely ξ. The frequency-squared dependence of the
separation arises because the rate curves obey the
familiar power law of multiphoton ionization: the
minimum number of photons to ionize scales linearly
with wavelength, so that R appears in the exponent.
The constant ξ does not appear in the theory of static-
field ionization, and so sensitivity to ξ distinguishes
multiphoton ionization processes from static-field
ionization processes.

We now examine the sensitivity of a1 to change in
wavelength. Table 2 shows values of a1 obtained from
figures 3 to 5.

λ (nm) Value of a1 in figure

195 0.001750

390 0.001630

780 0.001485

Table 2. Values of a1 for each wavelength as given in
figures 3 to 5.

Further examination of the values of a1 shows that, to
first approximation, a1 is linear in ln(R). The

smoothed ionization rates shown in figures 3-5 may be
given simply as

(5)

where a0 = 0.00099, and 

(6)

recalling that R is wavelength in units of 390 nm.

Finally, we draw attention to the fact that equation (5)
fails to model the ionization rate data in the low-
intensity limit. As intensity approaches zero, the rate
predicted by the power law approaches zero, but the
rate predicted by equation (5) does not. This feature is
not so obvious in figures 4 and 5, but is clear in figure
3. In the 195 nm case, equation (5) fails to model the
data accurately at intensities below 1014 W/cm2.

Additionally, at sufficiently high intensities, the data
departs from a linear trend in 1/(ln(Rate))2. At 
27×1014 W/cm2, the 390 nm data curls down due to the
onset of a more complicated ionization process [1]. At
these intensities, we observe a significant increase in
population driven into doubly-excited states, which
ionize less rapidly than the ground state. For this and
other reasons, the rate formula presented here cannot be
used to extrapolate to significantly higher intensities. The
results are extended to somewhat higher intensities in [1].

Static-field ionization rates obtained using
time-dependent numerical integration
In the calculation of static-field ionization rates, the
time-dependent approach is advantageous, since the
electric field may be ramped-on from zero to its peak
value using a quarter-cycle cosine ramp-on, rather than
being instantaneously switched on. The ramp-on may
be made sufficiently long so as to achieve an adiabatic
atomic response. More precisely, for sufficiently long
ramp-on times, T, all other ramp-on times t > T
produce the same ionization rate. At low electric field
strengths, E > 0.08 atomic units, a short ramp-on is
generally sufficient, whereas at higher field strengths,
E > 0.3 atomic units, a longer ramp-on is preferable.
However, no adiabatic response was observed for 
E > 0.38 atomic units. In other words, each choice of
ramp-on seemed to produce a different atomic response
and a different ionization rate. Figure 6 shows static-

Figure 4. Single-ionization rates of helium at 390 nm as
a function of intensity.

Figure 5. Single-ionization rates of helium at 780 nm as
a function of intensity.

Figure 6. Single-ionization rates (-1/ln(E2Rate(E))) of
helium due to static-electric fields of strength E. Rates
are given in atomic units.
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3 field ionization rates of helium. The rates are plotted as
-1/ln(E2Rate(E)) as a function of E.

The resulting curve is linear on the scale of figure 6 at
electric field strengths below 0.2 atomic units. Above
0.25 atomic units, the onset of a new profile is clearly
visible. Based on these considerations, the static-field
ionization rates can be fit with a very simple function:

(7)

where the step function, Step(x) = 1 for x > 0, and 0
otherwise. Electric field strengths, E, are in the range 
E < 0.4 atomic units. Equation (7) suggests that a
sudden change in the functional form of the ionization
rates occurs at E = 0.1755, with an E4 dependence
augmenting the functional form for E > 0.1755.

Finally, we compare our numerically integrated
ionization rates with those of time-independent
calculations [4,5]. The agreement is generally good, with
results typically differing by less than 2%.
Furthermore, we find that the classical ADK formula
fails to model the ionization rates in any limit we have
considered. Its failure arises mainly from the fact that
it is derived only for one-electron atoms, and in the
weak-field limit.

Conclusions
We have presented high-accuracy calculations of
single-ionization rates of helium at UV and optical
wavelengths. We have developed accurate models for
the ionization rate data in both the low- and high-
intensity limits, which are equally applicable at UV
and at optical wavelengths. The derived rate formulae
should prove useful to experimentalists, particularly
for the purpose of calibrating laser intensities.

We have also calculated static-field ionization rates of
helium, and derived their dependence on peak electric
field strength. The rates exhibit a tunneling-like profile

for low field strengths, before suddenly departing from
this behaviour at higher field strengths (E > 0.1755 au),
where above-barrier ionization ought to be the
dominant ionization process. The problem of estimating
the threshold field strength for the onset of above-
barrier ionization remains unsolved, despite being
subject to numerous investigations [5,7-9]. Additionally, the
lack of an adiabatic atomic response for E > 0.38 au
may indicate a limit in which static-field methods fail to
describe true atom-laser interactions.

Similarly, the relative contribution of tunneling is an
important problem that remains poorly understood.
Tunneling is a static-field process. Its magnitude is
therefore bounded by the static-field ionization rates
given in figure 1. It is clear from figure 1 that tunneling
models, such as ADK theory, fail to provide accurate
ionization rates, particularly in the high-intensity limit.
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