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Abstract
The mechanism for a new instability is discussed and a
dispersion relation derived. Unstable behaviour is
shown to result from feedback between the Nernst
Effect and the Righi-Leduc heat-flow. Calculations
based on the parameters used in a recent nanosecond
laser gas-jet experiment [1] predict growth of
perturbations with typical wavelengths of order 50 µm
and characteristic growth times of 0.15 ns. The
distortion of both magnetic field and temperature
profiles by the instability acts to concentrate heat-flow
into ‘islands’ and may have implications for plasmas in
which a high degree of symmetry is important.

Introduction
The existence of large self-generated magnetic fields
(~100 T) in laser-produced plasmas [2] has long been
known, and in recent years several experiments have
been designed to assess their impact on inertial
confinement fusion (I.C.F.) schemes [3] and to study
more general magnetic phenomena in laser plasmas,
such as magnetic reconnection [4] and instability [5]. In
addition, there has been increased discussion of the
possible uses for applied magnetic fields – for example,
in the suppression of non-local transport (1) and the
control of plasma density channels [6].

In this article we report a new instability that leads to
disruption of magnetic field and thermal energy
distributions, and results in the formation of large
heat-flow ‘islands’. For these reasons it is likely to have
an impact on plasmas in which either self-generated or
applied magnetic fields are present.

In our case unstable behaviour is driven purely by
transport processes, specifically the interaction of the
Nernst effect and the Righi-Leduc heat flow, and does
not require hydrodynamic motion. In addition,
positive feedback acts on existing magnetic fields (the
process does not itself generate field) and is exhibited
even when there are no gradients in electron number
density. Furthermore, the terms responsible for growth
go as k3/2, where k is the wavenumber of an unstable
perturbation, rather than the more usual k2. In these
ways what we see is distinct from instabilities existing
in the literature, such as those of Tidman-Shanny [7,8],
Weibal [9] and others [10,11,12].

For current purposes, and so that the relevance of the
instability may be made more clear, we focus on an
applied field case, specifically the geometry of Froula
et al. (2007) – in simulations of which the instability

was first observed [13]. In this experiment a nitrogen gas-
jet (atomic number Z = 7) with electron number
density ne = 1.5 × 10-19 cm-3 and initial temperature 
Te = 20 eV was subject to inverse bremsstrahlung
heating for 1ns by a long-pulse laser of wavelength
1.045 µm and intensity 6.3 × 1014 Wcm-2. Uniform
magnetic fields of strengths up to 12 T were imposed
parallel to the laser-heating beam and the radial heat-
flow qr inferred.

Like Froula et al., we focus on a two-dimensional
cross-section through a plasma perpendicular to
applied magnetic fields and the laser-heating beam.
However, for ease of analysis we consider an x-y,
rather than r-θ geometry, with a laser-heating strip in
the y-direction instead of a circular laser spot [14]. In
this way, the principle plasma temperature gradients
and Nernst velocities are parallel to the x-axis of the
system (see figure 1).

Figure 1. A snapshot of the instability from simulations
using the kinetic code IMPACT and taken from [8]. The
plasma was initially magnetised by a uniform field of
4 T, nevertheless, by the time of this snapshot (885 ps)
much of the field has been wafted away from the line 
x = 0 by Nernst advection parallel to the x-axis (top
right). Bulk temperature gradients in the x-direction
and heat-flow islands are illustrated in the contour
projections at the top and bottom left respectively.
Notice the large heat-flow in the y-direction caused
primarily by the Righi-Leduc effect (bottom right).
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3 Modeling the system
Our discussion revolves around two key transport
processes in magnetised plasmas: the Nernst effect,
which results in advection of magnetic fields with heat-
flux [15]; and the Righi-Leduc heat-flow [16], which describes
the ‘bending’ of the heat-flow by magnetic fields acting
on negatively charged heat-carrying electrons. Both
phenomena are partly illustrated in figure 1.

The bulk evolution of the plasma temperature, by
laser-heating, and magnetic field, by the Nernst effect,
complicates any attempt at a perturbation analysis of
the instability. However, progress can be made by
contriving a steady-state.

Suppose a plasma exhibited magnetic field and
temperature profiles as though it had been heated
(such profiles may be obtained from stable heating
runs); by ‘turning-off’ relevant physics one could,
providing there were no further heating, construct an
arrangement with temperature and magnetic field
gradients that was also non-evolving. This has been
our approach and has allowed us to study unstable
behaviour by perturbing a somewhat artificial system.

Equation set
If we neglect hydrodynamic motion and take ∇ne = 0,
the relevant physics may be described by the magnetic
field induction equation, the electron thermal-energy
continuity equation and the equations of classical
transport (Braginskii’s transport equations). The
necessarily neglected terms are those parts of the
thermal conductivity, electrical resistivity and the
Nernst and Ettingshausen terms that lead to evolution
of the plasma in the x-direction. In this way the
equations governing the instability become:

(1)

and

(2)

where we have substituted for the current using
Ampère’s Law

(3)

and neglected both Ohmic heating in the energy
equation and convection by electron motion in the
induction equation. The transport terms in equations
(1) and (2), after neglecting the appropriate physics,
take the form

(4)

(5)

(6)

and

(7)

where B = Bb defines a unit vector b in the direction of
the magnetic field (B = |B|) and x and y are unit
vectors in the x and y directions. The coefficient ψ’ is
used to account for the full heat-flow qT = qe – (5Te/2e)j,
where qe is the electron intrinsic heat-flow [17], so that 
ψ’⊥ = β⊥ + 5/2 and β^ = ψ’^. Care must be taken to
employ the Braginskii collision time τB rather than the
thermal collision time [18] τ = (2Te/me)1/2 = (4/3π1/2)τB.
The dimensionless transport coefficients α⊥, β^, κ⊥, κ^,
ψ’⊥ and ψ’^ are calculated using polynomial fits [19,20],
and are functions of the Hall parameter χ = ωeτB only
- where ωe = eB/me is the electron gyro-frequency. The
Nernst effect and the Righi-Leduc heat-flow, are
described by terms in β^ and κ^ respectively. [Note: we
have neglected the coefficients α^ and β⊥ which yield
only small corrections.]

Perturbation analysis
The unperturbed plasma is given temperature and
magnetic field profiles, T0 and B0 = B0b respectively, in
the x-direction (no gradients in the y-direction) as
calculated from 1-D linear heating simulations of
Froula’s experiment (see figure 2).

Figure 2. Temperature and magnetic field profiles at 
500 ps used in the steady state model. These snapshots
are taken from a 1-D linear simulation of the
experiment of Froula et al. using the extended transport
code Code_29 for the case of a 4 T applied field.

These background profiles are found to be static, i.e.
∂T0/∂t = ∂B0/∂t = 0, where, since it is always in the 
z-direction, we have expressed the magnetic field in
scalar form. For our stability analysis we add wavelike
perturbations in the y-direction to these background
profiles such that

(8)

and

(9)

where k is the perturbation wavenumber, ω the
frequency and δT’ and δB’ are phasors. Substitution of
equations (8) and (9) into (1) and (2) yield to first order

(10)

and

(11)

respectively, where in deriving (10) and (11), we have
used the results

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛

⎝
⎜

⎞

⎠
⎟ +
1
e

∇ × β ⋅ ∇Te( )

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛

⎝
⎜

⎞

⎠
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛

⎝
⎜

⎞

⎠
⎟,

j= 1
μ0

∇ ×B,

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x,

β ⋅ ∇Te = −β∧

∂Te

∂y
x,

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te ,

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( )

B = B0 (x) + δB(y, t) δB = δB'expi(ky −ωt)( ),

ω = −ik 2
meα⊥

e2neτ Bμ0
+

β∧

e

δT

δB

⎛

⎝
⎜

⎞

⎠
⎟

ω = −
2
3 k

τ BT0
me

∂κ∧

∂χ
eτ B

me

+
1

eneμ0
ψ '⊥ +

3
2 χ

∂ψ'⊥
∂χ

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

δB
δT

∂T0
∂x

−
∂B0
∂x

⎛

⎝
⎜

⎞

⎠
⎟

−
2
3 ik 2

τ BT0κ⊥

me

+
ψ'∧ T0
eneμ0

δB
δT

⎛

⎝
⎜

⎞

⎠
⎟

χ
ψ '∧

∂ψ '∧
∂χ

=
χ
β∧

∂β∧

∂χ
~ χ

κ⊥

∂κ⊥

∂χ
+1 ≤1,

0 <
χ

α⊥

∂α⊥

∂χ
<
1
4

δT

T0
~ δB

B0
<<1.

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛

⎝
⎜

⎞

⎠
⎟ +
1
e

∇ × β ⋅ ∇Te( )

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛

⎝
⎜

⎞

⎠
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛

⎝
⎜

⎞

⎠
⎟,

j= 1
μ0

∇ ×B,

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x,

β ⋅ ∇Te = −β∧

∂Te

∂y
x,

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te ,

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( )

B = B0 (x) + δB(y, t) δB = δB'expi(ky −ωt)( ),

ω = −ik 2
meα⊥

e2neτ Bμ0
+

β∧

e

δT

δB

⎛

⎝
⎜

⎞

⎠
⎟

ω = −
2
3 k

τ BT0
me

∂κ∧

∂χ
eτ B

me

+
1

eneμ0
ψ '⊥ +

3
2 χ

∂ψ'⊥
∂χ

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

δB
δT

∂T0
∂x

−
∂B0
∂x

⎛

⎝
⎜

⎞

⎠
⎟

−
2
3 ik 2

τ BT0κ⊥

me

+
ψ'∧ T0
eneμ0

δB
δT

⎛

⎝
⎜

⎞

⎠
⎟

χ
ψ '∧

∂ψ '∧
∂χ

=
χ
β∧

∂β∧

∂χ
~ χ

κ⊥

∂κ⊥

∂χ
+1 ≤1,

0 <
χ

α⊥

∂α⊥

∂χ
<
1
4

δT

T0
~ δB

B0
<<1.

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛

⎝
⎜

⎞

⎠
⎟ +
1
e

∇ × β ⋅ ∇Te( )

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛

⎝
⎜

⎞

⎠
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛

⎝
⎜

⎞

⎠
⎟,

j= 1
μ0

∇ ×B,

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x,

β ⋅ ∇Te = −β∧

∂Te

∂y
x,

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te ,

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( )

B = B0 (x) + δB(y, t) δB = δB'expi(ky −ωt)( ),

ω = −ik 2
meα⊥

e2neτ Bμ0
+

β∧

e

δT

δB

⎛

⎝
⎜

⎞

⎠
⎟

ω = −
2
3 k

τ BT0
me

∂κ∧

∂χ
eτ B

me

+
1

eneμ0
ψ '⊥ +

3
2 χ

∂ψ'⊥
∂χ

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

δB
δT

∂T0
∂x

−
∂B0
∂x

⎛

⎝
⎜

⎞

⎠
⎟

−
2
3 ik 2

τ BT0κ⊥

me

+
ψ'∧ T0
eneμ0

δB
δT

⎛

⎝
⎜

⎞

⎠
⎟

χ
ψ '∧

∂ψ '∧
∂χ

=
χ
β∧

∂β∧

∂χ
~ χ

κ⊥

∂κ⊥

∂χ
+1 ≤1,

0 <
χ

α⊥

∂α⊥

∂χ
<
1
4

δT

T0
~ δB

B0
<<1.

a1 =
β∧

e
, a2 =

α⊥me

e2neτ Bμ0
,

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛

⎝
⎜

⎞

⎠
⎟ +
1
e

∇ × β ⋅ ∇Te( )

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛

⎝
⎜

⎞

⎠
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛

⎝
⎜

⎞

⎠
⎟,

j= 1
μ0

∇ ×B,

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x,

β ⋅ ∇Te = −β∧

∂Te

∂y
x,

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te ,

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( )

B = B0 (x) + δB(y, t) δB = δB'expi(ky −ωt)( ),

ω = −ik 2
meα⊥

e2neτ Bμ0
+

β∧

e

δT

δB

⎛

⎝
⎜

⎞

⎠
⎟

ω = −
2
3 k

τ BT0
me

∂κ∧

∂χ
eτ B

me

+
1

eneμ0
ψ '⊥ +

3
2 χ

∂ψ'⊥
∂χ

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

δB
δT

∂T0
∂x

−
∂B0
∂x

⎛

⎝
⎜

⎞

⎠
⎟

−
2
3 ik 2

τ BT0κ⊥

me

+
ψ'∧ T0
eneμ0

δB
δT

⎛

⎝
⎜

⎞

⎠
⎟

χ
ψ '∧

∂ψ '∧
∂χ

=
χ
β∧

∂β∧

∂χ
~ χ

κ⊥

∂κ⊥

∂χ
+1 ≤1,

0 <
χ

α⊥

∂α⊥

∂χ
<
1
4

δT

T0
~ δB

B0
<<1.

a1 =
β∧

e
, a2 =

α⊥me

e2neτ Bμ0
,

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛

⎝
⎜

⎞

⎠
⎟ +
1
e

∇ × β ⋅ ∇Te( )

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛

⎝
⎜

⎞

⎠
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛

⎝
⎜

⎞

⎠
⎟,

j= 1
μ0

∇ ×B,

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x,

β ⋅ ∇Te = −β∧

∂Te

∂y
x,

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te ,

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( )

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛

⎝
⎜

⎞

⎠
⎟ +
1
e

∇ × β ⋅ ∇Te( )

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛

⎝
⎜

⎞

⎠
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛

⎝
⎜

⎞

⎠
⎟,

j= 1
μ0

∇ ×B,

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x,

β ⋅ ∇Te = −β∧

∂Te

∂y
x,

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te ,

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( )

δ δ δ( ),

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛

⎝
⎜

⎞

⎠
⎟ +
1
e

∇ × β ⋅ ∇Te( )

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛

⎝
⎜

⎞

⎠
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛

⎝
⎜

⎞

⎠
⎟,

j= 1
μ0

∇ ×B,

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x,

β ⋅ ∇Te = −β∧

∂Te

∂y
x,

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te ,

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( )

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
1
e

∇ × β ⋅ ∇Te( )  

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

j= 1
μ0

∇ ×B, 

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x, 

β ⋅ ∇Te = −β∧

∂Te

∂y
x, 

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te , 

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( ) 

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
1
e

∇ × β ⋅ ∇Te( )  

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

j= 1
μ0

∇ ×B, 

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x, 

β ⋅ ∇Te = −β∧

∂Te

∂y
x, 

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te , 

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( ) 

B = B0 (x) + δB(y, t) δB = δB'expi(ky −ωt)( ), 

ω = −ik 2
meα⊥

e2neτ Bμ0
+

β∧

e

δT

δB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
1
e

∇ × β ⋅ ∇Te( )  

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

j= 1
μ0

∇ ×B, 

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x, 

β ⋅ ∇Te = −β∧

∂Te

∂y
x, 

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te , 

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( ) 

B = B0 (x) + δB(y, t) δB = δB'expi(ky −ωt)( ), 

ω = −ik 2
meα⊥

e2neτ Bμ0
+

β∧

e

δT

δB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 

∂B
∂t

= −∇ ×E = −∇ ×
me

e2neτ Bμ0
α ⋅ ∇ ×B

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
1
e

∇ × β ⋅ ∇Te( )  

∂Te

∂t
= −

2
3ne

∇ ⋅ qT =
2
3∇ ⋅

τ BTe

me

κ ⋅ ∇Te

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
2
3∇ ⋅

Te

eneμ0
ψ'⋅∇ ×B⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

j= 1
μ0

∇ ×B, 

α ⋅ ∇ ×B = −α
⊥

∂B

∂y
x, 

β ⋅ ∇Te = −β∧

∂Te

∂y
x, 

κ ⋅ ∇Te = κ⊥

∂Te

∂y
+ κ∧b × ∇Te , 

ψ '⋅∇ ×B =ψ '⊥ ∇ ×B +ψ '∧
∂B

∂x
y,

Te = T0(x) + δT(y, t) δT = δT 'expi(ky −ωt)( ) 

B = B0 (x) + δB(y, t) δB = δB'expi(ky −ωt)( ), 

ω = −ik 2
meα⊥

e2neτ Bμ0
+

β∧

e

δT

δB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 



HIGH POWER LASER SCIENCE I Theory and Computation

3

99CENTRAL LASER FACILITY Annual Report 2008/2009

(12)

(13)

Eliminating δT/δB from equations (10) and (11), and
by using the definitions

(14)

(15)

(16)

(17)

we obtain the dispersion relation for these wavelike
perturbations:

(18)

The positive root of this equation is unstable for a
range of k up to a cut-off and predicts a growth rate
equal to the imaginary part of ω (see figure 3).

Equations (15) and (16), with their dependence on the
background temperature and magnetic field profiles,
indicate that for realistic scenarios the unstable
behavior will vary both temporally, as ∂T0/∂x and
∂B0/∂x evolve in time, and spatially, since the gradients
are a function of position. For this reason theoretical
predictions of the growth of the instability are limited
to a particular cross-section in x and based on a given
snapshot of the bulk profile.

Unstable behaviour is driven primarily by feedback
between the Nernst effect and the Righi-Leduc heat-
flow – phenomena accounted for by the β^ and κ^

contribution to the term a1b1 in the dispersion relation.
Notice that this results in growth that goes as k3/2,
while the most important damping effects, namely
thermal and resistive diffusion, are proportional to k2.
Broadly speaking it is this that gives us the range of k
for unstable behaviour and the shape of the dispersion
curve in figure 3 (∀c1, c2 ∈/R +, ∀k ∈/R+ such that
c1k3/2 – c2k2 > 0).

The fastest growing perturbation for the conditions
described in figure 3 has a wavenumber of
approximately 0.007 (normalised units), corresponding
to a wavelength of λ ≈ 50 µm. At this wavelength the
growth rate is about 0.00015 (normalised units) or
ωmax ≈ 7 Ghz yielding a characteristic growth time 
tchar = 1/ωmax ≈ 0.15 ns. Figure 3 indicates reasonable
agreement between theory and simulation given the
somewhat crude nature of our approximations.

Mechanism
The physical causes behind the instability are perhaps
best understood by considering each aspect of the
positive feedback process in turn. We do this by
ignoring all terms on the right hand sides of
equations (1) and (2) except for those leading to the
Nernst effect (terms in β^) and Righi-Leduc heat-flow
(terms in κ^), i.e.

(19)

and

(20)

i) The affect of a temperature perturbation on
magnetic field

Consider a temperature perturbation of the form
δTsin(ky) on top of a bulk profile T0 (c.f. equation
(8)). From equation (19), and by using the earlier
results (12) and (13), we find

(21)

that is, growth of a magnetic field perturbation in anti-
phase with the temperature perturbation. Physically
this is a result of the compressional aspect of Nernst
advection. The Nernst velocity (the velocity of
advection) is proportional to -∂T/∂y so that magnetic
field is compressed in the troughs of the temperature
perturbation and rarefracted at the peaks. Hence we
find that a perturbation in the temperature induces
one in the magnetic field out of phase by π.
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Figure 3. The theoretical dispersion relation for a cross-
section at x ≈ 100 µm from snapshots taken at 300 ps
(black curve) and 500 ps (green curve). The x-axis
represents the wavenumber normalised to ≈ 5.6 × 10-8 m
and the y-axis the perturbation growth rate normalised
to ≈ 2.2 × 10-14 s. Blue crosses are growth rates
measured from simulations of a plasma that also evolves
in x i.e. simulations in which the physics neglected in this
article has been included. The profiles used to calculate
the theoretical dispersion curves were taken from linear
simulations of the experiment of Froula et al. for an
applied field of 8 T.
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3 ii) The affect of a magnetic field perturbation on
temperature

Now consider a plasma with a temperature profile
∂T0/∂x < 0 (but with no gradients in the y-direction)
subject to a uniform magnetic field on which a
perturbation of the form δBsin(ky) has been added
(c.f. equation (9)). From equation (20) we find

(22)

so that if ∂κ^/∂χ < 0 the magnetic field perturbation
will induce a temperature perturbation that leads by
π/2. This effect is due to the dependence of κ^ on χ,
which is itself directly proportional to B (see fig. 4).
Since ∂κ^/∂χ < 0, regions of higher magnetic field
strength have a lower Righi-Leduc heat-flow, so that
heat is transported away from these regions more
slowly than regions of higher B. In this way thermal
energy is built up in places where heat-flow goes from
high to low (as we move along the positive y-axis) and
removed from places where the flow goes from low to
high. Notice that if ∂κ^/∂χ > 0 the reverse is found
and a temperature perturbation is generated which
lags by π/2.

The two stages of the feedback process result in
induced perturbations which have different phases.
Magnetic field perturbations will ‘pull’ temperature
perturbations towards a phase difference of ±π/2
(depending on the sign of ∂κ^/∂χ), while temperature
perturbations ‘pull’ magnetic field perturbations
towards a phase of π. The net result of this interaction
is that perturbations propagate in the positive 
y-direction if ∂κ^/∂χ > 0 or the negative y-direction if
∂κ^/∂χ < 0, and have a phase difference of φ ≈ 3π/4
(approximately halfway between π and π/2).

These more qualitative features are reflected in the
stability analysis of §4. Broadly speaking the positive
root of (18) can only lead to unstable solutions
providing

(23)

(a condition which is necessary but not sufficient). If
we take ∂T0/∂x < 0, this means that ∂κ^/∂χ must be
negative for waves to grow which propagate in the
positive y-direction and vice versa.

Figure 4. A plot of the variation of κ^, the transport
coefficient responsible for Righi-Leduc heat flow, with
Hall parameter. Notice the maximum value at about 
χ = 10-1.

More formally, we expect wavelike perturbations to
travel with group velocity vg = ∂ (ℑ{ω})/∂k. For the 
x-axis symmetric system discussed above, this means
that perturbations either side of x = 0 will travel in
opposite directions. Notice that the growth rate is
unaffected by such a transformation since 

(24)

as expected from the symmetry of the problem.

Conclusions and consequences
We have derived the dispersion relation for a
previously unknown plasma instability driven by the
Nernst effect acting on magnetic fields and the Righi-
Leduc heat-flow resulting from bulk temperature
gradients. The instability disrupts the uniformity of
magnetic field and temperature profiles, leading to
periodic lowering of the Hall parameter χ and the
subsequent formation of ‘islands’ of large heat-flow.

We have shown that perturbations obey a relation with
growing terms proportional to k3/2 and principle
diffusive terms (resistive and thermal) that go like k2.
Thus we find unstable behaviour for a range of k up to
a cut-off after which diffusive effects become
dominant. For parameters similar to those found in
the work of Froula et al. [1], perturbations with
wavelength of order 50 µmn are the fastest growing,
having a characteristic growth time of about 0.15 ns –
well within the nanosecond timescale of the
experiment.

We have also discussed the travelling nature of the
instability: perturbations do not grow in a fixed
position and instead propagate in a direction which
depends on both temperature gradients and the sign of
∂κ^/∂χ (and so with Hall parameter χ = ωeτB).

The full consequences of the instability are yet to be
elucidated, but we can speculate as to its likely affect
on the investigation of Froula et al. In this case we
expect the instability to compromise attempts to
suppress non-local heat-flow, which, rather than being
reduced by large imposed fields, will instead be
squeezed through regions in which the Hall parameter
is lowered.
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