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In this work, wave breaking for general, non-quasi-
static oscillations in warm plasma is investigated using
Lagrangian methods. In particular, the effects of
secular behaviour on wave breaking limits are
explored, and it is shown that thermal effects can
sometimes prevent wave breaking by curbing secular
behaviour. The oscillation equations for fully
relativistic warm plasma are cast into Lagrangian
form, and wave breaking limits are derived for waves
in warm plasma having non-constant density. These
results have important applications in electron
acceleration schemes that employ a wakefield or a slow
beat wave propagating down a density gradient.

The problem of wave breaking of one-dimensional
quasi-static waves, i.e. waves that are nonevolving with
respect to a comoving coordinate ξ = x – vϕt for some
fixed speed vϕ, has been solved completely [1,2,3,4,5,6].
However, there are many configurations of non-quasi-
static waves for which it is also important to know the
wave breaking limits. Wave breaking in plasmas having
non-constant background densities, for example, is of
much importance to laser resonance absorption [7,8],
electron acceleration schemes using colliding laser
pulses on downward density slopes [9,10], and two-stage
injection-acceleration schemes where electrons are
injected into a laser-driven wakefield at high plasma
density and subsequently accelerated at a lower
density [11]. In a recent experiment [12], electron bunches
having very low absolute longitudinal momentum
spread (0.17 MeV/c) have been produced by wave
breaking of a plasma wave propagating down a
density gradient, as predicted by Bulanov et al. [13].
Furthermore, a plasma oscillation may have a spatially
varying amplitude for any number of reasons, and this
has its own peculiar effects on wave breaking if the
oscillation is relativistic [14]. While various cases of
breaking of non-quasi-static waves have been
investigated for cold plasma [1,13,14,15,16], there are hardly
any results for such waves in the presence of thermal
effects. Since a realistic plasma needs to have a finite
temperature to prevent recombination, it is important
that the theory of non-quasi-static plasma oscillations
is expanded to include thermal effects also.

The wave breaking limits for quasi-static waves are
well-established. For a quasi-static wave with amplitude
A, frequency ω and wave number k, cold-plasma wave
breaking sets in at kA = 1 or vϕ ≡ ω/k [1,2]. Warm-plasma
wave breaking occurs at v = vϕ[1–αkBT/(mvϕ2)1/(α+1) for
non-relativistic plasma[3,4] [where α=3 (α=1) denotes

adiabatic (isothermal) compression], or 
v = vϕ[1–√β/γϕ2+√β/(γϕ3vϕ)]/(1+vϕ√β/γϕ) for relativistic
plasma [5,6] (where β = 3kBT/(mec2) and γϕ2 = 1/(1 – vϕ2)).
For non-quasi-static waves however there is some
controversy between the models of Coffey [3] and Infeld
and Rowlands [17], which must be resolved before one
can proceed. Where Coffey's model predicts that wave
breaking occurs when the mean plasma velocity v
satisfies 

v = vϕ[1–(αvϕ2/(vϕ2)1/(α+1)] (1)

the paper by Infeld and Rowlands claims that wave
breaking occurs simply when v = vϕ, i.e. the same
condition as found for a cold plasma [1], independent of
the plasma temperature. However, a close scrutiny of
Ref. [17] reveals an algebraic error and an error in their
reasoning; correction of these errors leads to a
recovery of Coffey’s limit (1). A detailed discussion
can be found in Ref. [18].

Now that the proper wave breaking limit for non-quasi-
static plasma oscillations has been determined, one can
proceed to the study of secular behaviour. Secular
behaviour is the phenomenon that the phase difference
between neighbouring fluid elements in a plasma
oscillation is not constant in time. It occurs when the
oscillation frequency of the plasma electrons depends on
x– [1,14,15,16,13]. This happens, for example, in an
inhomogeneous plasma [1,12,13] or for a relativistic plasma
oscillation in homogeneous plasma where the oscillation
frequency can still depend on x– through the oscillation
amplitude [14,16]. In a cold plasma, secular behaviour will
cause a plasma oscillation to eventually break at any
amplitude. This works as follows. A plasma oscillation
having a position-dependent frequency is given by e.g.
x(x–,τ) = Acos[k0x

– – ω(x–)τ]. The effective wave number
keff is then derived from ∂x/∂x–: keff = k0 – (∂ω/∂x–)τ, i.e.
keff grows linearly in time. Wave breaking will occur
whenkeffA=1, so even for k0A=1 secular behaviour
will cause the wave to break after a time of at most 
τWB = 1/(A∂ω/∂x–). Also, by defining the effective phase
speed as vϕ,eff = ωkeff

[13], it follows that wave breaking
occurs if the peak forward fluid speed vmax satisfies 
vmax = ωA = vϕ,effkeffA = vϕ,eff. As shown in Ref. [13],
secular behaviour will cause the wave's phase speed to
decrease until it equals the peak forward fluid speed, at
which point the wave breaks. Electron trapping by a
wakefield on a downward density ramp, as demonstrated
by Geddes et al. [12], is based on this principle.

Wave-breaking limits for non-quasi-static
oscillations in a warm 1-D electron
plasma
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3 While the role of secular behaviour in cold plasma
wave breaking is well studied [1,13,15,14,16], secular behaviour
in warm plasma wave breaking is only touched upon by
Infeld and Rowlands [19]. Even so, a linearised version of
the warm-plasma wave equation is used in Ref. [19],
which leads to an incorrect wave breaking limit because
it underestimates the plasma pressure near breaking.
Because of this, and because the combination of
secular and thermal effects yields some surprising
results, this subject will be studied here.

Although thermal effects will normally reduce the
wave breaking amplitude [5,4,3,6], they may surprisingly
also delay or prevent the onset of wave breaking in the
case of secular behaviour. This is because secular
behaviour will make k grow, while thermal effects will
make k advect, so the regions of largest k and largest
∂k/∂t will no longer coincide. The secular growth of k
will then saturate eventually, preventing the onset of
wave breaking in certain circumstances. As an
example, the evolution of k will be investigated in a
thermal plasma, on a finite slope where the
background density n0 falls an amount ∆n>0 over a
length L, as used e.g. in electron trapping experiments
by Geddes et al. [12]. From ∂k/∂τ + ∂ω/∂x– =0 [15] and the
Bohm-Gross dispersion relation ω2 = ωp

2(x–) + αvT
2k2,

it is found that (assuming that kλD = 1 everywhere):

(2)

A second “Lagrangianisation” τ’ = τ, x–’ =
x––αλD

2ωp ∫kdτ’ [19] yields that ∂keff /∂τ’ = 
–(ωp /2n0)∂n/∂x– ≈ (ωp/2n0)(∆n/L). Using ∂x–/∂τ’ =
αλD

2ωp k, this expression integrates to 
∆(keff λD

2) ≤ ∆n/(αn0) over the entire length of the
slope, or keff λD ≤ kmaxλD ≡ √(k0λD)2 + ∆n/(αn0), where
k = k0 at τ = 0. As in (1), wave breaking then occurs if
kmaxA;1 – (αk2

maxλD
2)1/(1+α) (increasing the wave number

lowers the wave breaking limit in two ways). The wave-
breaking amplitude AWB and corresponding electric
field EWB are then given by:

(3)

(4)

where vϕ = ω(kmax)/kmax is the local phase speed of the
wave (using Bohm-Gross for ω(k)), C1 = 1 [4] and
C3 = 4/3 [3]. For a homogeneous plasma, ∆n = 0 and 
AWB = [1 – (αk2

0λD
2)1/(1+α)]/k0, a result already known

from the work of Dawson [1] and Coffey [3]. For an
inhomogeneous cold plasma, ∆n = 0 and λD = 0,
leading to AWB = 0. This is a consequence of the fact
that the electron oscillations in an inhomogeneous cold
plasma exhibit secular behaviour [13]: k grows linearly in
time, and no matter how small the amplitude, kA↑1
and the wave will eventually break. For both ∆n = 0
and λD = 0 however, AWB > 0 again, provided that
α(k0λD)2 + ∆n/n0 < 1. It follows that the secular
behaviour that is caused by the plasma inhomogeneity
is curbed by thermal effects: k will only grow a finite
instead of an unlimited amount, and for sufficiently
small A and ∆n, wave breaking will not happen in spite
of the density ramp.

The above results can be extended to cover plasma
oscillations having relativistic amplitudes and/or phase
speeds, as encountered in e.g. laser-wakefield
acceleration [12]. A full analysis is beyond the scope of
this manuscript; the reader is referred to Ref. [18].

In summary, wave breaking has been studied for
general, non-quasi-static plasma waves. It has been
found that breaking of such waves has many traits in
common with the breaking of quasi-static waves,
confirming the notion that quasi-static wave breaking
is a proper special case of general wave breaking. A
proper investigation of secular behaviour in thermal
plasma has been carried out here for the first time. It
has been found that thermal effects can curb secular
behaviour and prevent wave breaking in certain
specific circumstances, even though thermal effects
normally facilitate wave breaking [3,4,5,6]. The wave
breaking limits for plasma waves in inhomogeneous
thermal plasma have been derived for the first time. As
such, this work is a generalisation of earlier work on
breaking of quasi-static waves in thermal plasma [6],
with important consequences for the study of
inhomogeneous plasma oscillations or plasma waves in
inhomogeneous plasma. The author would like to
thank P. Norreys for helpful comments. This work was
supported by the STFC Accelerator Science and
Technology Centre (ASTEC).
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