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Introduction 

Imaging techniques now dominate the study of excited state 
molecular dynamics and strong field physics. The ability to 
angle and energy resolve fragments produced via laser induced 
processes can provide a new viewpoint for the study of 
molecular fragmentation, strong field ionization and 
dissociation and Coulomb explosion processes, among others. 
To this end a new velocity map imaging (VMI) spectrometer 
specifically designed for the study of highly energetic fragments 
has been designed and built at the Artemis facility. The 
chamber contains a molecular beam source and VMI 
spectrometer that can be configured to collect both ions and 
electrons with kinetic energies up to 200 eV.  

General Description 

The atomic and molecular (AMO) physics endstation has been 
designed to be a versatile chamber for the study of a variety of 
gas phase targets. The chamber is separated into two sections, a 
lower chamber which contains a molecular beam source and an 
upper chamber which contains the VMI spectrometer.  

 

 
Figure 1: The AMO endstation at the Artemis facility 
 

The source chamber is pumped by two 3200 l/s turbo molecular 
pumps and contains a continuous molecular beam source. The 
molecular beam is created by expanding a high pressure gas 
sample through a 100 µm diameter nozzle. The beam is 
skimmed at the interface between the source and spectrometer 
chambers with the skimmer acting to separate the two 
chambers. The cooling from the supersonic expansion and 
skimming the beam is sufficient to produce rotationally cold 
molecular sample. Cooling has been experimentally 
demonstrated by the impulsive alignment of N2 molecules 
produced by the source. The level of alignment achieved was 

measured via laser Coulomb exploding the molecule and 
measuring the angular distribution of the resulting fragments.  

 

 

Figure 2: Laser Coulomb explosion a) ion images and b) 
photoelectron images from impulsively aligned N2 molecules. The 
arrows indicate the laser polarization direction 
 

The upper chamber is pumped by a 600 l/s turbomolecular 
pump maintaining a base pressure of approximately 10-9 mbar. 
The VMI spectrometer follows the three electrode design of 
Eppink and Parker [1] with the molecular beam entering the 
spectrometer through a small hole in the repeller plate. Voltages 
of up to 15 kV can be applied to the VMI optics which allows 
us to image high energy fragments of up to 200 eV. The 
spectrometer can be configured to detect electrons or ions. The 
detector itself consists of a two stage 70 mm imaging quality 
micro-channel plate, backed by a phosphor screen and CCD 
camera. The spectrometer is surrounded in a double layer of µ-
metal shielding to prevent penetrating magnetic field from 
altering the trajectories of photoelectrons produced. The 
imaging detector can be gated such that specific molecular 
fragments can be imaged exclusively or configured for time of 
flight detection of ions or electrons.   

The AMO chamber can be connected to any of the laser and 
XUV beam lines available at Artemis with the laser crossing the 
molecular beam at right angles between the repeller and 
extractor plates. The ions/electrons are then accelerated 
collinearly with the molecular beam toward the imaging 
detector. 

The endstation has so far been used to measure energy and time 
resolved photoelectron images, Coulomb exploding molecular 
fragments and ion imaging of molecular fragmentation.  

Conclusions 

The AMO endstation is designed to enable experiments such as 
studies of the dynamics of aligned molecules, control of 
electron recollisions, time-resolved photoelectron imaging of 
excited state molecular processes, and Coulomb explosion 
imaging of molecular wavepackets. The AMO endstation has 
been used with the TOPAS and the monochromated XUV 
beamline and is now available to users. Future development of 
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the molecular beam source will allow studies on clusters and 
molecules of biological interest. 
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