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1 Introduction

Over the last few decades laser technology has ad-
vanced exponentially, regularly passing landmarks in
the achievable intensities. Already, intensities exceeding
1022 W/cm2 have been produced, and forthcoming facil-
ities such as the Extreme Light Infrastructure (ELI) are
expected to pass 1023 W/cm2 in the next decade. At
such intensities, qualitatively new physics will become
experimentally accessible for the first time.

Many of the proposed experiments using these ultra-
high power laser facilities will involve colliding electron
beams with intense laser pulses to produce high fre-
quency radiation through Compton backscattering. The
quality of these secondary beams, such as their coher-
ence and intensity, are highly sensitive to the properties
of the electron beams, such as their average energy and
momentum spread. These properties will vary as the
electrons interact with the laser, so a proper understand-
ing of their evolution is essential to ensure the production
of high quality radiation.

At the intensities anticipated at ELI, both radiation
reaction and quantum electrodynamical effects are ex-
pected to strongly affect an electron’s motion. In this
article, we explore how these effects alter the momentum
spread of a relativistic electron beam as it passes through
an intense laser pulse, and in particular how they affect
the directionality of the resultant beam cooling. For fur-
ther details and quantitative examples, see [1].

2 Classical and quantum radiation reaction

Before we can address the evolution of the bulk prop-
erties of an electron beam, we must understand how an
individual particle interacts with electromagnetic fields.
In most cases this is well understood: the particle accel-
erates according to the Lorentz force,

ẍa =
e

m
F abẋ

b, (1)

where −e is the charge and m the mass of the particle, F
is the electromagnetic field, and x is the particle’s world-
line, with overdots denoting differentiation with respect

to proper time. However, the accelerations produced by
the intense laser pulses of upcoming facilities are suffi-
ciently great that (1) must be supplemented by an addi-
tional force describing the recoil due to emission of ra-
diation. The exact form of this radiation reaction force
remains contentious [2], but in the classical limit it is
commonly believed to be well described by the Landau-
Lifshitz equation [3],

ẍa =
e

m
(F ab + τ ẋc∂cF

a
b) ẋ

b + τ
e2

m2
∆a

bF
b
cF

c
dẋ
d, (2)

where τ = e2/6πm is the ‘characteristic radiation time’
and ∆a

b = δab + ẋaẋb is the ẋ-orthogonal projection op-
erator.

At higher intensities (2) is no longer adequate, as
quantum corrections cannot be ignored. The importance
of quantum effects can be assessed from the ‘quantum
nonlinearity parameter’,

χ =
e~
m2

√
F abFacẋbẋc, (3)

which measures the electric field observed by the parti-
cle in units of the Sauter-Schwinger field m2/e~. When
χ is too large for quantum effects to be ignored, but
still significantly less than unity, the energy of a typi-
cal photon emitted is much less than that of the radiat-
ing particle. It follows that the primary effect of quan-
tum dynamics in such conditions is to reduce the rate
at which energy is emitted by an overall factor g(χ), de-
pending on the quantum nonlinearity parameter. The
function g(χ) is a nontrivial integral over Bessel func-
tions; for illustrative purposes, we will use the approxi-
mation g(χ) = (1 + 12χ+ 31χ2 + 3.7χ3)−4/9 introduced
in [4].

In the regime where the discreteness of photon emis-
sion (and pair production) can be neglected, then, we ob-
tain a quantum-corrected classical equation of motion [5]
by scaling the radiation reaction terms in (2) by g(χ):

ẍa =
e

m
(F ab + τ̃ ẋc∂cF

a
b) ẋ

b + τ̃
e2

m2
∆a

bF
b
cF

c
dẋ
d, (4)

where τ̃ = gτ . We use (2) and (4) as our starting
point for an investigation into transverse and longitu-
dinal beam cooling.
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3 Transverse and longitudinal beam cooling

We are interested in the evolution of large-scale proper-
ties of an electron beam of tens of pC or more, containing
some 108 particles. It would be impractical to follow the
motion of each particle, and for our purposes unneces-
sary. Instead, we describe the beam by a distribution
function F(x, ẋ), which satisfies the Vlasov equation

LV (FΩ) =

(
dF
dφ

+ βF
)

Ω = 0. (5)

Here, Ω is the phase space volume element and LV is the
Lie derivative with respect to the vector field V which
represents the direction of increasing ‘time’ parameter φ.
Since it is our intention to apply (5) to a laser pulse,
it is convenient to take φ to be the phase of the pulse
rather than proper time, and hence a lightlike (rather
than timelike) parameter. The pulse itself we model as
a plane wave,

e

m
F ab = aε(φ) (kaεb − εakb) + aλ(φ) (kaλb − λakb) (6)

where the functions aε and aλ are dimensionless mea-
sures of the electric field strength in the ε and λ direc-
tions, respectively, and k is the null wave 4-vector.

For exploring beam cooling, the crucial quantity in (5)
is β, the divergence of V , determined by LV Ω = βΩ.
This determines the rate of contraction of phase space
under the flow of V , and is related to the rate of change
of entropy [6]. To analyse this further, we introduce
velocity-space coordinates

uφ = −k · ẋ, uε = ε · ẋ, uλ = λ · ẋ. (7)

(The fourth component of velocity is not an independent
variable, but can be determined from the normalisation
condition ẋ2 = −1.) Then it follows from (5) that

β =
∂

∂uφ

(
Aφ
uφ

)
+

∂

∂uε

(
Aε
uφ

)
+

∂

∂uλ

(
Aλ
uφ

)
, (8)

where the acceleration functions Aφ, Aε and Aλ are ob-
tained by contracting the RHS of the relevant equation
of motion (1), (2) or (4) with −k, ε and λ, respectively.

Our first observation is that, for electrons evolving ac-
cording to (1), β = 0, so the beam cooling effect is en-
tirely due to radiation reaction. Before turning to the
cases of classical and quantum radiation reaction, we
first note that β naturally decomposes into longitudinal
and transverse parts,

β‖ =
∂

∂uφ

(
Aφ
uφ

)
, β⊥ = β − β‖. (9)

The transverse velocities uε and uλ can be integrated out
of (5), yielding a longitudinal Vlasov equation for the
reduced distribution f(x, uφ) =

∫
Fduεduλ, in which β‖

assumes the role of β in the full Vlasov equation (5).
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Figure 1: Ratio of longitudinal (β‖) to transverse (β⊥)
phase space contraction, when the quantum reduction of
radiated power is taken into account. For the classical
case, this ratio is always unity.

We first consider the classical case, in which each elec-
tron behaves according to (2), and use carets to distin-
guish quantities from their equivalents in the quantum
case. Here we find

β̂‖ = β̂⊥ = −2τ
(
a2ε + a2λ

)
uφ ≤ 0. (10)

Since β̂ ≤ 0, this clearly corresponds to cooling, rather
than heating, of the electron beam. This is exactly as
we would expect, since energetic particles tend to radi-
ate more than less energetic ones. Less intuitively, we
have a directional symmetry here, with equal contribu-
tions to cooling coming from the longitudinal and trans-
verse directions (this is not strictly isotropic, though,
since the two transverse directions contribute in total the
same cooling as the single longitudinal direction). More-
over, there is complete isotropy within the transverse ε–λ
plane, regardless of the polarisation of the laser.

How does the inclusion of quantum effects alter this
picture? It is straightforward to show that switching
from (2) to (4) modifies β⊥ by the simple substitution
τ → τ̃ . However, since χ = ~

√
a2ε + a2λuφ/m, β‖ ac-

quires an additional contribution from the derivative of
g. Hence we have

β⊥ = gβ̂⊥, β‖ = β⊥

(
1 +

g′

2g
χ

)
, (11)

where the prime denotes differentiation with respect
to χ. Since g decreases from 1 at χ = 0 to 0 as χ→∞,
g′ < 0, so the additional term tends to suppress the beam
cooling.

Using the quantum dynamics, we still find that the
beam cools, though there is a significant reduction in this
effect. In addition, the symmetry between cooling in the
longitudinal and transverse directions has been broken,
with substantially more cooling in the latter, see Fig. 1.
However, we once again find equal cooling in the two
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Figure 2: Evolution of the reduced distribution f for a
beam of initial momentum spread 20% around an aver-
age of 1 GeV as it passes through a 27 fs laser pulse of
intensity 2 × 1021 W/cm2. The upper panel shows the
classical result, where each electron satisfies (2), while
the lower panel is the quantum-corrected version, satis-
fying (4).

transverse directions, irrespective of the polarisation of
the laser in the ε–λ plane.

Given the substantial reduction in longitudinal rela-
tive to transverse beam cooling, it is pertinent to ask
whether the former has an appreciable effect. To this
end, we have investigated the solution to the longitudi-
nal Vlasov equation,

df

dφ
+ β‖f = 0, (12)

for the case of a 1 GeV electron beam with 20% momen-
tum spread colliding with a 27 fs laser pulse of intensity
2 × 1021 W/cm2. The results [7] are shown in Fig. 2.
We clearly see that the quantum case exhibits substan-
tially less beam cooling than the classical case (as well
as less reduction in the average energy), but neverthe-
less the final momentum spread is significantly less than
the initial value. While it would require a far greater
computational overhead to compute the full distribution
F(x, ẋ), the change in its transverse spread can be read-
ily determined from Figs. 1 and 2.

4 Conclusion

With the advent of a new breed of high power laser facil-
ity over the next few years, it is essential to understand
how radiation reaction and quantum effects can influence
the properties of relativistic electron beams interacting
with ultra-intense laser pulses. We have explored a prime
example of such effects, namely the radiative reduction
of momentum spread, or beam cooling.

In the absence of radiation reaction, there is no beam
cooling: the electron beam emerges from the laser pulse
with the same momentum spread with which it started.
The situation is changed when radiation reaction is in-
cluded. According to the classical theory, the interac-
tion with the laser pulse causes significant beam cool-
ing, which is equally partitioned between the transverse
and longitudinal directions. Including quantum effects
changes things once again, with a substantial reduction
in beam cooling, accompanied by a breaking of the sym-
metry between longitudinal and transverse directions,
with the transverse beam cooling lying closer to the clas-
sical case, and the longitudinal cooling more resembling
the case with no radiation reaction. Nevertheless, in
all cases there is perfect isotropy within the transverse
plane, the polarisation of the laser pulse playing no role
at all.
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