
CLF Annual Report 2015
August 4, 2015

The effect of superluminal phase velocity on
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Abstract
We have derived an analytic solution for the problem of a single electron in a EM plane wave of arbitrary strength
and arbitrary phase velocity. The solution has been checked against direct numerical integration. From this
analytic solution we can begin to understand the extent to which EM dispersion (and thus superluminal phase
velocities) due either plasma dispersion or wave-guiding affects DLA.
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1. Introduction
Here we report on our recent work on problems in Direct Laser
Acceleration (DLA), soecifically on single electron motion
in strong EM waves. We have addressed the problem of
motion in EM waves which have an arbitrary phase velocity.
This is highly relevant to laser-plasma interactions where
both plasma dispersion and wave-guiding effects can lead to
superluminal phase velocities. We have derived a solution to
the problem of a single electron in a strong EM plane wave
with arbitrary phase velocity, and we quantify the extent to
which superluminal phase velocities can have a deleterious
effect on DLA in the single electron, plane wave case. Our
solution is checked against direct numerical integration of the
equations of motion in primitive form.

2. Analytic Solution of Electron Motion in
Laser Field with Arbitrary Phase Velocity

To understand the effect that a superluminal phase velocity
has on electron acceleration, we can look at the motion of a
single electron in a plane EM wave. To this end, we derive
an analytical solution for the momentum of a single electron
accelerated by a plane electromagnetic wave with a given
phase velocity vp. Let the plane wave be described by a vector

potential of the form,

A = [0,A,0] = [0,A0 cos(ωLτ) ,0] , (1)

where τ = t− x/vp, and ωL is the frequency of the field. The
electric and magnetic fields are related to the vector potential
via E=−∂tA and B=∇×A, so the electric field of this wave
is polarized in the y-direction, and the magnetic field in the z-
direction. Note that we have introduced the dispersive nature
of electromagetic waves in plasmas via the specification of an
arbitrary phase velocity, vp, instead of c. Only this needs to
be specified, and the actual dispersion relation itself does not.

The equations of motion of the electron that need to be
considered are:

d px

dt
=−|e|vyBz, (2)

d py

dt
=−|e|Ey + |e|vxBz, (3)

d pz

dt
= 0, (4)

dγ

dt
=−
|e|vyEy

mec2 . (5)

From the definition of τ , one can differentiate to obtain,

dτ

dt
= 1− vx

vp
, (6)

and this can then be used to write the field components as Ey =
−∂τ A, Bz = (1/vp)∂τ A . In turn this means that equations (2),
(3), and (5) can be re-written in the form,

d px

dt
=
|e|vy

vp

dAy

dτ
, (7)

d py

dt
= |e|

dAy

dτ

(
1− vx

vp

)
, (8)

dγ

dt
=
|e|vy

mec2
dAy

dτ
. (9)
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Using Eqs. (6) and (8), one can immediately obtain

py = |e|Ay, (10)

which is also obtained in the case where vp = c. The next
constant of motion is obtained from combining Eqs. (7) and
(9). This yields,

γ−
vp

c
px

mec
= 1, (11)

provided that the electron is at rest prior to the interaction with
the laser pulse. We now need to relate this to the dephasing
rate, i.e. dτ/dt. On multiplying Eq. (6) with γ one obtains,

γ
dτ

dt
= γ− px

mevp
. (12)

In the case where vp = c, the right-hand side becomes exactly
equal to unity. However, in the general case of vp 6= c we
instead have,

γ
dτ

dt
= 1+

(
vp

c
− c

vp

)
px

mec
. (13)

Adopting the normalizations p̃x = px/mec and ay = |e|Ay/mec,
we can re-write Eq.(7) as,

d p̃x

dt
=

c
γvp

d
dτ

(
a2

y

2

)
, (14)

and we can use Eq. (13) to both make a change of variables
(from t to τ on the left-hand side) and eliminate γ . The result-
ing equation can be directly integrated to obtain,

p̃x +

(
vp

c
− c

vp

)
p̃2

x

2
=

c
2vp

a2
y . (15)

It follows directly from Eq. (15) that the longitudinal momen-
tum of a forward moving electron is

p‖
mec

= p̃x =

√
u2 +a2(u2−1)−u

u2−1
, (16)

where for compactness we have introduced

u≡ vp/c. (17)

For u→ 1, we recover from Eq. (16) the well-known result
for the luminal case,

p‖
mec

=
a2

2
. (18)

It is evident from Eq. (16) that the superluminosity is not
important as long as a2(u2−1)� u2. This condition is equiv-
alent to the condition δu� 2/a2 for a� 1, where again
δu = vp/c−1.

For δu� 2/a2, we find from Eq. (16) that

p‖
mec
≈ a√

2δu
, (19)

where we assumed that δu� 1. We therefore conclude that
the superluminosity leads to a reduction of the maximum
longitudinal electron momentum. More importantly, p‖ scales
linearly with wave amplitude for δu� 2/a2.

The change in the scaling for the longitudinal momen-
tum with the wave amplitude has a profound effect on the
maximum longitudinal velocity the electron can achieve. For
δu� 1/2a2, the parallel velocity approaches the speed of
light with the increase of the wave amplitude:

(c− v‖)/c = 1− p‖/γmec≈ 2/a2. (20)

However, once a exceeds the critical value of 1/
√

2δu the
maximum longitudinal velocity becomes independent of the
wave amplitude:

(c− v‖)/c = 1− p‖/γmec≈ δu. (21)

This result indicates that the maximum longitudinal electron
velocity is no longer limited by c, but rather by c(1−δu) due
to the superluminosity of the accelerating wave. This feature
unavoidably manifests itself at high field amplitudes for a
given superluminal phase velocity.

3. Numerical Calculations

In this section we present some example numerical calcula-
tions which both illustrate the general results found in the
previous sections and provide a numerical test of those find-
ings. In these calculations we integrate the primitive forms
of the equations of motion [Eqs. (2) and (3)] with a specified
laser field and the equations for the spatial coordinates of the
electron. The algorithm used for this is the second order cen-
tered method of Boris. The time step was chosen to take the
magnitude of the vector potential into account [?]. The nor-
malized vector potential of the laser pulse in all simulations
had the form

ay = a0 cos(ωLτ)exp
[
−(x− vgt− x0)

2

2c2t2
L

]
, (22)

where tL is a laser pulse duration in vacuum, and vg is the
group velocity of the pulse (= c in vacuum).

In order to test our analytical solution we carried out a
series of calculations in which we varied a0 and vp and com-
pared the results to the predictions of Eq. (16) by comparing
the peak px/mec obtained. For the series in which we varied
only a0, we used vp =1.15c and vg =0.866c for the phase and
group velocities. For the laser pulse we used λL =1µm and
tL =20 fs throughout.
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Figure 1. Peak longitudinal momentum px from a series of
numerical calculations in which a0 is varied for vp = 1.15c
against the predictions of Eq. (16).

The results of the first series are plotted in Fig. 1 against
the predictions of Eq. (16). As can be seen, the agreement is
excellent. Figure 2 shows that if the phase velocity is varied
for constant a0 (a0 = 5 was used) then we also obtain excellent
agreement with the analytic solution. We can therefore con-
clude that the analytic solution has been reasonably verified
by comparison to numerical calculations.
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Figure 2. Peak longitudinal momentum px from a series of
numerical calculations in which vp is varied for a0 = 5
against the predictions of Eq. (16).

4. Conclusions
We have reported on our recent work on electron motion in
laser fields that is relevant to DLA of electrons in laser-plasma
interactions. We have derived a solution for the classic prob-
lem of an electron in a plane wave for arbitrary phase velocity

of the EM wave. EM waves in a plasma or waveguide struc-
ture can have superluminal phase velocities. Here we show
the effect of this, and it is clear, as it should be from qualitative
considerations, that this might be deleterious to DLA. The
significance of this effect should be carefully considered in
future studies of DLA.
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