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Abstract

Raman and Brillouin amplification are two schemes for
amplifying and compressing short laser pulses in plasma.
Depending on the laser and plasma configurations, these
schemes could potentially deliver the high-energy high-
power pulses needed for inertial confinement fusion, es-
pecially fast-ignition fusion. Analytical self-similar mod-
els for both Raman and Brillouin amplification have al-
ready been derived [1, 2], but the consequences of this
self-similar behavior are little known and hardly ever put
to good use. In this paper, we will give an overview of the
self-similar laws that govern the evolution of the probe
pulse in Raman and Brillouin amplification. We will
then show how these laws can be exploited, in particular
regarding the parameters of the initial probe pulse, to
control the properties of the final amplified probe and
improve the efficiency of the process.

1 Introduction

In the context of Raman or Brillouin amplification, the
term “self-similar” refers to the notion that the basic
shape of the growing seed pulse does not change during
the amplification process, while its amplitude and dura-
tion evolve according to well-defined scaling laws. For
Raman amplification, the self-similar character of the
seed pulse endows it with the following properties: (i)
pulse amplitude is proportional to the interaction time t
[3–6], (ii) pulse duration is proportional to 1/t, or band-
width proportional to t [4–7], (iii) pulse energy is pro-
portional to t, or inversely proportional to its duration
[8–13], (iv) the asymptotic self-similar “π-pulse” solu-
tion is an attractor solution, i.e. a “not quite ideal”
seed pulse will reshape itself into an approximate π-pulse
shape [1, 4, 7, 13–18], (v) in multi-dimensional simula-
tions where the pulses have a finite transverse width, the
seed pulse acquires a “bowed” shape [18–25]. Thus, evi-
dence that the Raman-amplified seed pulse is self-similar
is ubiquitous but not normally collated in a systematic
way. Most of the above also applies to Brillouin ampli-
fication in the strong-coupling regime [2], although the
scalings for the seed pulse duration and amplitude with
interaction time are different.

2 Theory

We define a0 and a1 to be the (scaled) vector poten-
tial envelopes of pump and probe pulse respectively,
a0,1 ≡ (8.55 × 10−10g1/2(I0,1λ

2[Wcm−2µm2])1/2, where
g = 1 (g = 1/2) denotes linear (circular) polarisation,
and δne to be the envelope of the electron density fluc-
tuations associated with the Langmuir wave. Let ω0

denote the pump laser frequency, and ne and ωpe the
background electron density and corresponding electron
plasma frequency; ωpe � ω0 is assumed. The group ve-
locity of the pump pulse is then given by vg = c2k0/ω0 =
c(1 − ω2

pe/ω
2
0)1/2 ≈ c. The electron thermal velocity is

defined via v2e = kBTe/me and λD = ve/ωpe.
For Raman amplification, the envelope equations for

pump, seed and plasma wave will take the following
form:

(∂/∂t+ vg∂/∂x)a0 = −Γa1b, (1)

(∂/∂t− vg∂/∂x)a1 = Γa0b
∗, (2)

(∂/∂t+ 3v2e(k/ωpe)∂/∂x)b = Γa0a
∗
1, (3)

where Γa0 denotes the Raman backscattering growth
rate in homogeneous plasma and b ≡ αδne/ne with α
to be determined. Comparing these equations to the en-
velope equations by Forslund et al. [26] yields:

Γα = ω2
pe/(4ω0), Γ/α = c2k2/(4gωpe), (4)

where k ≈ 2k0 ≈ 2ω0/c is the wave number of the RBS
Langmuir wave. It then follows that:

Γ = [ω0ωpe/(4g)]1/2, α =
√
g(ωpe/ω0)3/2/2. (5)

Following the approach by Malkin, Shvets and Fisch
[1], we define coordinates ζ = z/c + t, τ = Γ2a20t and
ξ = 2

√
ζτ . Self-similar solutions to the above system can

then be obtained in terms of ξ. In particular, the self-
similar seed pulse will have a fixed duration ξ1 ≈ 5 (the
quantity ξM used elsewhere [1, 18] denotes the position
of the seed pulse maximum rather than its duration).

By substituting ζ = τ1 and t = τ0/2 into the definition
of ξ, and using the energy conservation relation a20τ0 =
a21τ1, we derive the following equations for the duration
of the evolving seed pulse:

Γ2a20τ0τ1 = ξ21/2, (6)

Γa1τ1 = ξ1/
√

2. (7)
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Scalings for the seed pulse duration and ampltiude fol-
low immediately: τ1(t) = ξ21/(4a

2
0Γ2t) and a1(t) =

2
√

2a20Γt/ξ1.
The purpose of these equations is as follows. Eq. (6)

allows one to derive scalings for τ1(t) and a1(t), and also
to tune the duration and amplitude of the final seed pulse
via the intensity of the pump pulse [18]. Eq. (7) pro-
vides a relationship between seed pulse duration and am-
plitude that does not depend on the pump pulse at all.
This is important for the preparation of the initial seed
pulse in experiments: τ1(0) and a1(0) are not indepen-
dent parameters, but should ideally obey Eq. (7); if they
do not do so, the seed pulse will first reshape itself until
they do, and only amplify after that. Thus, tailoring the
seed pulse according to (7) from the start will speed up
the amplification process and increase its efficiency.

The energy density of a Langmuir wave is given by E =
(1/2)neme(ω

2
pe/k

2)(1 + 3k2λ2D)||δne/ne||2. The Manley-
Rowe relation for the pump pulse and the RBS Lang-
muir wave then reads [26]: a20ω0 = ga2Lωpe, or a0 = ||b||,
where aL = ||eEL/(meωpec)|| = ωpe/(2ω0)||δne/ne|| is
the scaled electric field of the Langmuir wave. The wave
breaking limit for the RBS Langmuir wave is given by
aL = ωpe/(2ω0), or ||δne/ne|| = 1 [1, 26, 28]. Wave
breaking then happens for Raman amplification when
a0 ≥ α, with α as given above. Under the condi-
tions a0 = α and ωpeτ1 ≤ 1, one finds that a1 ≤
21/2ξ1(2gα)1/3 and ω0τ1 ≥ g1/3(2α)−2/3 after amplifi-
cation [4, 14, 29].

Brillouin scattering in the so-called weak-coupling
regime [30–34] is very similar to Raman scattering
and can be treated in the same way. We introduce
ωpi = ωpe

√
Zme/mi and cs = ve

√
Zme/mi. For

a20 < 8g(ω0/ωpe)
2csv

2
e/c

3, the electron pressure is the
dominant restoring force and the plasma wave disper-
sion is not significantly affected by the beating between
pump and seed pulses. In that case one can reuse equa-
tions (1)-(3) and only needs to replace 3v2e(k/ωpe) by
cs in (3). For backward Brillouin scattering, the ion-
acoustic wave has wave number ks = 2k0 and frequency
ωs = csks = 2csk0. With these definitions, the equations
for Γ and α read:

Γα = ω2
pe/(4ω0), Γ/α = c2c2sk

2
s/(4gωsv

2
e), (8)

and we find for Γ and α:

Γ = cωpeωs/(4ve
√
gω0ωs), α =

√
gveωpe/(c

√
ω0ωs).

(9)

With these definitions, all the above results for Raman
amplification also apply to the weak-coupling Brillouin
case, including Eqns. (6) and (7) and the seed pulse
scalings. The energy density of an ion-acoustic wave
is given by E = (1/2)v2emene(1 + k2λ2D)||δn/ne||2 [26].
From this, we recover both the Manley-Rowe relation
a0 = ||b|| and the wave breaking threshold a0 ≥ α.

For a20 > 8g(ω0/ωpe)
2csv

2
e/c

3 or Γa0/ω0 > cs/c, the
ponderomotive pressure from the beating between pump

and seed pulses will take over from the thermal pressure
as the primary restoring force for the ion-acoustic wave.
This regime is called strong-coupling Brillouin scattering.
In this regime, the equation for the plasma wave needs
to be replaced by:

∂2b/∂t2 = −αscc
2k2ω2

pi/(2gω
2
pe)a0a1 = −Γ2

sca0a1. (10)

From (1), (2) and (10) and using k = 2k0 = 2ω0vg/c
2 as

before, we find for Γsc and αsc:

Γscαsc = ω2
pe/(4ω0), Γ2

sc/αsc = c2k2ω2
pi/(2gω

2
pe). (11)

This leads to the following solutions [2, 26, 35]:

Γsc = [(vg/c)
2ω2

piω0/(2g)]1/3 = (2ωsΓ
2)1/3, (12)

αsc = ω2
pe/(4ω0Γsc), (13)

Ωsc = ωsc + iγsc = [(1 + i
√

3)/2]Γsca
2/3
0 . (14)

Following the approach by Andreev et al. [2], we define

τ = Γsca
2/3
0 t, ζ = Γsca

2/3
0 (t+x/vg) and ξ = ζ

√
τ . Again,

self-similar solutions to the system (1), (2) and (10) can
then be obtained in terms of ξ. In particular, it will be
found that the self-similar seed pulse will have a fixed
duration ξ1 ≈ 2.5.

By substituting ζ = Γscτ1 and τ = Γscτ0/2 into the
definition of ξ and using the energy conservation relation
a20τ0 = a21τ1, we derive the following equations for the
duration of the evolving seed pulse:

Γ3
sca

2
0τ0τ

2
1 = 2ξ21 , (15)

Γ3
sca

2
1τ

3
1 = 2ξ21 . (16)

Scalings for the seed pulse duration and ampltiude are
then as follows [2]: τ1(t) = ξ1/(Γsc

√
a20Γsct) and a1(t) =

(2/ξ1)1/2(a20Γsct)
3/4. The role of equations (15) and (16)

is equivalent to the role of (6) and (7) for Raman ampli-
fication.

Plasma wave breaking in the strong-coupling regime
of Brillouin scattering is not as straight-forward as for
weak-coupling Brillouin or Raman scattering, because
ωsc is not constant throughout the process. In partic-
ular, there will be a sudden drop at the back of the
probe pulse, where ∇2(a0 · a1) suddenly drops. Then
the phase speed ωsc/(2k0) also drops while the ion oscil-
lations maintain their amplitude, making the ion wave
liable to breaking. This explains why Andreev et al. ob-
served ion wave breaking just behind the growing probe
pulse rather than inside it [2]. This will be studied in
more detail elsewhere. In that light, the “wave breaking
time” twb = (mi/2me)

1/2/(a0ω0) from Forslund et al.
[26] likely refers to the time after the passage of the seed
pulse rather than its duration.

Finally, we comment on the “bowed” shape of the
amplified self-similar seed pulse. To correctly describe
this shape, we need the time coordinate of the maxi-
mum of the seed pulse, τM , rather than its duration, τ1.
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From the definition of the self-similar coordinates, it fol-
lows that τM/τ1 = ξ2M/ξ

2
1 ≈ 2 for Raman amplification,

while τM/τ1 = ξM/ξ1 for strong-coupling Brillouin am-
plification. Inserting these expressions into (6), (7), (15)
or (16) and introducing r-dependent pulse amplitudes
a0,1(r) provides a full description of the bowed shape
via τM (r).

3 Discussion and conclusions

As shown before by Trines et al. [18], the self-similar
equations involving both pump and probe parameters
can be used to tune the final duration of the probe via
the intensity of the pump. The other self-similar equa-
tions, which govern the evolution of the probe amplitude,
are special in the sense that the pump pulse has been
completely eliminated from them. They can be used in
the preparation of the initial probe pulse as follows. As
reported by Malkin et al. [1], the ideal “π-pulse” solu-
tion for the probe pulse in parametric amplification is a
so-called attractor, which means that if the initial probe
pulse does not have the ideal π-pulse shape, it will re-
shape itself first before it starts growing. If the probe
pulse is prepared in such a way that its amplitude and
duration obey the relevant self-similar relations from the
start, this “reshaping” stage can be kept to a minimum,
so the probe will start growing sooner and the amplifi-
cation process will be more efficient.

While the scaling of probe pulse amplitude and dura-
tion with interaction time has been studied before [2, 7],
the pump-independent relationships between probe am-
plitude and probe duration have not been derived explic-
itly to date. These relationships are important, however,
when designing amplification experiments: if the probe
pulse is shaped to obey these relationships at the start
of the interaction, proper amplification will start sooner
and the energy transfer will be more efficient.

Further scalings can be derived from the self-similar
solutions in each case. This will be the subject of future
study.
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