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exchange chamber at a high pressure (above 75 bar) and the 
temperature is controlled from around 20°C up to 40°C. At the 
higher temperature (and therefore pressure) the carbon dioxide 
behaves as a supercritical fluid displaying the properties of both 
a gas and liquid simultaneously. Once in such a state, the 
carbon dioxide can be vented off without any surface tension 
effects. When this process is complete, the foam is dry and 
ready to be used as a target. The solvent exchange stage takes 
around 2 hours but is highly dependent on the amount of foam 
material that is being processed and can take up to 8 hours. 

Polymerisation process 

When UV light of an appropriate wavelength is incident on the 
dissolved photo initiator molecules they split into two or more 
free radical parts. The free radicals can either recombine, but 
will split again under the UV, or they can react with the 
TMPTA monomer molecules but not the carefully chosen 
solvent. TMPTA has three functional groups containing a 
carbon double bond which are possible sites for a free radical to 
bond with. When a free radical reacts with a TMPTA molecule 
it opens up the double bond and forms a small chain at this 
point but leaves the other half of the double bond as a free 
radical which allows the chain to react with further TMPTA 
molecules creating longer and longer chains. Because TMPTA 
has three functional groups it is possible to have cross-linking 
between adjacent chains giving the overall polymer network 
rigidity.  

Highly pure chemicals are key to the success of the 
polymerisation process because the free radical photo initiator 
parts or polymer chains will react with any impurity stopping 
the formation or growth of the polymer network.  

Semi-Automated production 

The most time consuming stages of the foam production 
process when making a large number of targets are the filling 
and curing steps. Given the regular spacing and grid-like nature 
of arrays it was proposed that a robot might be able to complete 
both of the steps quickly and simultaneously. The shot-to-shot 
variation in the foams should also be reduced by using pre-set 
dispensing values. 

A 3 axis (x,y,z) robot with dispensing capability (figure 3) was  
used to prove the principle of automated production. The robot 
was controlled via a laptop and custom written software which 
allowed the integration of the UV curing stage using a digital 
signal to trigger an LED source. 

 

Figure 3. Dispensing robot 
with 3 axis stage. 4 
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There were a number of challenges that needed to be addressed 
to commission the system to be suitable to make foam targets. 
An array mount holder, shown in figure 4, was designed to hold 
multiple arrays with an x,y positional accuracy of better than 
200um. When thin (<150um thick) arrays were placed in the 
holder it was found that they could bow with a change in height 
of several hundred microns. In addition to the bowing different 
thickness array mounts could in practice be used and so it was 
decided that it was necessary to incorporate a feedback loop 
between the metal dispensing tip and the top surface of the 
metal arrays. The loop would trigger only when the tip touched 
the array and this position in z would then be set to zero. The tip 
could then be raised by a predefined amount before performing 
a dispense routine. The feedback loop allowed the system to 

cope with multiple target designs and built flexibility into the 
production process. 

 

Figure 4. Holder plate with 
space for 20 array mounts. 

Positional accuracy was 
specified to be better than 

200um in x & y. 

It was discovered that when dispensing different liquids through 
a standard tip the physical characteristics of the liquid could 
yield surprisingly different results as shown in figure 5. For 
water, the droplet would form below the end of the tip. For the 
foam solution the liquid would climb up the outside of the tip. 
When dispensing into a shallow container there are obvious 
limitations if the liquid does not present itself at the end of the 
needle, especially if the foam solution is to be dispensed onto a 
very thin backing foil of a few 10’s of nanometers thick in 
which case any contact between the needle and the foil would 
damage it.  It was decided to bend the end of the tip by 90° and 
use the wicking property of the foam solution to help with the 
filling procedure. 

With the foam solution exposed proud of the needle it could be 
dispensed on one side of an array hole and the meniscus 
dragged over to the opposite side without the needle touching 
the fragile foils. To ensure such behaviour a gap was required 
between the tip and the array of the order of 50 – 100 microns 
which was possible to program using the contact feedback loop. 

 

Figure 5. Left: A water 
droplet hangs below the end 
of the dispensing tip. Right: 

A foam solution droplet 
climbs up the dispensing tip. 

Results 

The height of the foam as produced by robotic fill and cure was 
measured relative to the flat surface of the array mount and was 
compared with a set produced using a manual fill. 
Measurements were taken using a white light interferometer 
which produced a 3D height map as shown in figure 6a. The 
height map was levelled and a lineout taken through the centre 
of a foam to obtain a measurement shown in figure 6b. 

 

Figure 6a. 3D representation of a scan using a white light 
interferometer of a robotic filled foam. 
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