Ultrafast X-ray Scattering: Beyond Structural Dynamics

Adam Kirrander University of Edinburgh Frontiers in Physical Sciences (Imperial)

Vision: Map total wave packet

Complex processes

- Nuclear and electronic dynamics
- Internal conversion
- Intersystem crossing
- Multiple electronic states

Experiments

- Ultrafast spectroscopy
- Strong-field measurements
- Scattering

Theory

- Electronic structure
- Nuclear dynamics
- Observables

Ultrafast x-ray scattering is emerging as an important technique

AMO physics, photochemistry, new technologies

Example 1/2: STRUCTURAL DYNAMICS

CSPAD r % Intensity Change 0 Sample Reservoir -1--2 4 200 400 600 800 -400⁻²⁰⁰⁰ 200 400 600 80 Pump-Probe Delay (fs) 3 9 14-1 HH V 1,3-Cyclohexadiene 2 н н 1 hv Scattering н Chamber H 1,3-Cyclohexadiene X-ray Probe Pulse 1,3,5-Hexatriene PHYSICAL 267 nm UV Pump Pulse REVIEW ETTERS.

Minitti et al. PRL 114 255501 (2015) + Wolf et al. Nature Chem. 11 504 (2019)

Example 2/2: Excited state structure (N-methyl morpholine)

Stankus et al. Nature Chemistry (2019)

TOMORROW

Identify electronic states, analyse coherences

*Simmermacher et al. PRL 122 073003 (2019) and JCP 151 174302 (2019)

Final thoughts

Full characterization of molecular wave packet

- Identify electronic state
- Nuclear + electronic dynamics (inversion problem) PRL 117 153003
- Coherent mixed scattering^{*}
 - Transient electronic dynamics
 - Degree of coherence
 - Signatures of conical intersections (Mukamel)

Experimental considerations

- *q*-range
- Signal/noise (repetition rate)
- Characterized/seeded x-ray pulses
- New detectors? Energy resolution?
- Optical laser systems @ LCLS
- Sample delivery (molecular alignment)

COMPUTATIONAL AND THEORETICAL GUIDANCE ESSENTIAL

Colleagues & collaborators

University of Edinburgh:

Darren Bellshaw, **Nikola Zotev**, **Andrés Moreno**, **Mats Simmermacher**, Maria Tudorovskaya, Kyle Acheson, **Hai-Wang Yong** (visitor from Brown)

Collaborations (theory):

Dmitry Shalashilin	Leeds
Niels Henriksen	DTU
Klaus Møller	DTU
Christian Jungen	UCL/CNRS
Martin Paterson	Heriot-Watt

Peter Weber Mike Minitti Russell Minns Brown SLAC Southampton

The Leverhulme Trust

Example 3: Confirm excited state (N-methyl morpholine)

Yong et al. J. Phys. Chem. Lett. (2018)

Example 4: Counting electrons during dissociation

Signal $q \rightarrow 0 \propto N_{elec}^2$

Ruddock et al. Angew. Chemie (2019)

Computational tools: reconstruct dynamics

*Quantum yield close to recent CASPT2 simulations

- <RMSD>_t for all trj-pairs
- Clustering algorithm OPTICS (reachability plots)
- 7 clusters

Probability density plot for unweighted simulation

§AI-MCE/SA3-CASSCF(6,4)/cc-pVDZ

Consider **future experiments** that exploit **coherence** of x-rays

Original work by Cao+Wilson, Bratos, Møller+Henriksen, Dixit+Santra, Mukamel

Scattering of coherent x-rays

- Quantized x-ray field $(\hat{a}, \hat{a}^{\dagger})$
- Non-stationary molecular wavepacket
- Scattering in 1st order perturbation theory

$$\Psi(\bar{\boldsymbol{r}}, \bar{\boldsymbol{R}}, t) = \sum_{i}^{N} \chi_{i}(\bar{\boldsymbol{R}}, t) \varphi_{i}(\bar{\boldsymbol{r}}; \bar{\boldsymbol{R}})$$

$$\widehat{H}_{int} = \overrightarrow{A} + \overrightarrow{A^2}$$

Scattering of coherent x-rays

- Quantized x-ray field $(\hat{a}, \hat{a}^{\dagger})$
- Non-stationary molecular wavepacket
- Scattering in 1st order perturbation theory

$$\Psi(\bar{\boldsymbol{r}}, \bar{\boldsymbol{R}}, t) = \sum_{i}^{N} \chi_{i}(\bar{\boldsymbol{R}}, t) \varphi_{i}(\bar{\boldsymbol{r}}; \bar{\boldsymbol{R}})$$

$$\widehat{H}_{int} = \overrightarrow{A} + \overrightarrow{A^2}$$

Simmermacher et al. PRL 122 073003 (2019) and JCP 151 174302 (2019)

3 distinct components

Simmermacher et al. PRL 122 073003 (2019) and JCP 151 174302 (2019)

Simulation of experiment in H₂

Simmermacher et al. PRL 122 073003 (2019) and JCP 151 174302 (2019)

R

Difference Signal Nuclear probability density on $B^1 \Sigma_u^+$ R/Å t/fs T_{vib} $3T_{vib}$ $\frac{T_{vib}}{2}$ 2

Signal predominantly $> 0 \Rightarrow$ inelastic transitions from B-state more likely

The inelastic component changes with geometry ⇒ in contrast to the Independent Atom Model (IAM)

Coherent mixed term vanishes for LARGE DETECTION WINDOW in present case (due to symmetry)

Simmermacher *et al.* JCP **151** 174302 (2019)

Physical

Time-resolved imaging of photo-induced dynamics Faraday Discussion

1 - 3 February 2021, Mumbai, India

A discussion meeting...

Recorded for posterity High impact Everyone can contribute

Chairs: Gopal Dixit and Adam Kirrander

Coherent mixed term vanishes for LARGE DETECTION WINDOW in present case (symmetry)

4

$$\begin{split} \Lambda_{ji}(\tilde{\boldsymbol{q}},\tilde{\boldsymbol{R}}) &= \left\langle \varphi_{j}(\tilde{\boldsymbol{R}}) \right| \hat{\tilde{L}}^{\dagger} \hat{\tilde{L}} \left| \varphi_{i}(\tilde{\boldsymbol{R}}) \right\rangle \\ &\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_{\mathrm{Th}} W(\Delta \omega) \sum_{i,j}^{N} \int I(t) \left\langle \chi_{j}(t) \right| \Lambda_{ji}(\tilde{\boldsymbol{q}},\tilde{\boldsymbol{R}}) \left| \chi_{i}(t) \right\rangle dt, \\ &\frac{d\sigma}{d\Omega} = \frac{d\sigma_{\mathrm{bg}}}{d\Omega} + \frac{d\sigma_{\mathrm{cm}}}{d\Omega} + \frac{d\sigma_{\mathrm{cm}}}{d\Omega}. \end{split}$$

Simmermacher *et al.* JCP **151** 174302 (2019)