Diamond/Bath/Manchester/Cardiff Collaboration

Paul Raithby

Jonathan Skelton

Lauren Hatcher

Long term collaboration between University of Bath, University of Cardiff, University of Manchester and Diamond Light Source.

- Use pump-probe methods to investigate photo-activated chemical systems
- Jonathan has preformed all the computational studies which has been vital for this investigation

Simple, crystal-engineering approach:

- Use bulky, chelating ancillary fragments
- Photo-inert fragments dominate crystal packing, generating a "reaction cavity"
- Facilitate high conversion whilst reducing crystal strain and fatigue

Pseudo-steady-state

- Fully reversible, with reverse nitrito → nitro process induced on warming
- Very fast photoconversion MS threshold temp ("MS limit") ~ 220 K

- Crystal irradiated *in-situ* at λ = 400 nm
- Complete, 100% conversion to metastable nitrito-ONO isomer below 200 K

Temp / K	NO ₂	ONO
	Occupancy	Occupancy
100	0.00	1.00
200	0.00	1.00
220	0.71	0.29
240	1.00	0.00
250	1.00	0.00
260	1.00	0.00

[1] L. E. Hatcher, J.M. Skelton, M. R. Warren, C. Stubbs, E. L. da Silva, P. R. Raithby CrystEngComm, 2016, 18, 4180-4187

Being Predictive

- Combining Arrhenius and JMAK expressions gives expression for ES $\rm t_{1/2}$

$$t_{\frac{1}{2}}(T) = \left[-\frac{1}{Ae^{-\frac{E_a}{RT}}} \ln \frac{1}{2} \right]^{\frac{1}{n}} = \left[-\frac{1}{A} \ln \frac{1}{2} e^{\frac{E_a}{RT}} \right]^{\frac{1}{n}}$$

• Extrapolation allows prediction of t_{1/2} (and hence lifetimes)

Numerical simulation: predict how isomer ratios evolve under different conditions **Input** = kinetic parameters from solid-state kinetic studies

Outputs include: predicted excitation/decay, pseudo-steady-state profiles; pump-probe TR pulse sequences

[1] L. E. Hatcher, J.M. Skelton, M. R. Warren, C. Stubbs, E. L. da Silva, P. R. Raithby CrystEngComm, 2016, 18, 4180-4187

Time-resolved Results

Automatic processing

Quick analysis to determine the photo-conversion of each time-bin is crucial to guide the next set of experiment

- Images are sorted into time-bins during data collection
- Diamonds computer cluster was utilised to auto-processed all time-bin simultaneously using xia2/DIALS (peak finding, indexing, integration and scaling)
- A series of structure refinement was then automatically completed and statistical information output

Plot produced 5 minutes after end of collection from the autoprocessing:

- How fast can we go?

Pilatus 300K

- Using Pump-MultiProbe techniques, the Dectris Pilatus is limited by the image readout time with millisecond time-resolve at best.
- For a single time-delay the Pilatus can be electronically gated at 200 ns. To accumulate enough intensity may take numerous hours and would be unrealistic for multiple snapshots along a reaction pathway.
- Timepix detector is a continuous readout detector with 25 ns time-resolution.
- Rather than images, the detector records time and position of each photon as well as the laser trigger (or pump source) into the data stream.
- The time-resolution or data binning can be selected in processing.

Tristen/Timepix

Can we go even faster?

Faster speed required the activation light (pump) to be delivered in a short time period. Pulsed laser are ideally suited for these experiments.

PORTO laser

Andy Dent and Ann Fitzpatrix

- The PORTO laser provides a tuneable high-repetition rate pulsed laser for Diamond beamlines. It is portable and can be installed in a suitably equipped experiments hutch within a few days.
- A wavelength range of 210 nm to 2600 nm can be achieve using the OPA.
- The laser pulse width is 290 fs.
- The variable repetition rate of the laser can be adjusted from a single pulse up to 600 KHz, which is greater than the orbit frequency of Diamond.

How fast can we go?

[Pd(Bu₄dien)(NO₂)]BPh₄

 Experimental condition can be optimized by monitoring a single reflections (LED power, temperature, crystal size etc) before collecting an entire dataset

Can we go even faster?

Jarzembska K. N.; et. al., Inorg Chem. 2014, 53(19), 10594–10601.

Acknowledgments

Dave Allen, Sarah Barnett, Lucy Saunders, Adrian Wilcox Andy Dent, Ann Fitzpatrick Giulio Crevatin, Nicola Tartoni, David Omar	
Ben Williams, Noemi Frisina, Graeme Winter, Markus Gerstel and Richard Gildea, Paul Hathaway and Andrew Foster and William Nichols	
Paul Raithby, Lauren Hatcher, Jonathon Skelton, Anuradha Pallipurath, Clare Stubbs, Radosław Kamiński	

Thank you for listening

