UK X-FEL Science Case: Workshop on Chemical Dynamics and Energy G.003, Urban Sciences Building, Newcastle University, December 11, 2019

### Non-Linear X-ray Emission Spectroscopy on 3d Transition Metals



## Uwe Bergmann SLAC National Accelerator Laboratory







## **X-Ray Emission Spectroscopy**



For reviews see e.g.: Glatzel & UB, Coord. Chem. Rev., **249**, 65-95, (2005) Pollock & DeBeer, Accounts of Chemical Research (2015)

2

### X-ray Emission Spectroscopy at an XFEL Works

SLAC

3



Energy (eV)

Alonso-Mori et al, *PNAS*, **109**, 19103 (2012)

- ~ 0.5 eV resolution

Alonso-Mori et al, *Rev. Sci. Inst.*, **83**, 073114 (2012)

### **Calculated Co VtC Spectra**



Zhang et al, J. Chem. Phys. 151, 144114 (2019)

### **Mn Double-Core-Hole VtC Transitions**

SLAC



**Two-color X-ray pulses** would help!

Zhang et al, *J. Chem. Phys.* **151**, 144114 (2019) <sub>5</sub>

### **Schematics of Stimulated X-ray Emission**



**ASE: Amplified Spontaneous Emission** 

### Stimulated Kα Emission from Neon Gas



Hard X-rays Cu foil Yoneda et al, Nature 524, 446 (2015)

## **Experimental Parameters and Setup**



Collect 100% of emission in forward direction

Use flat analyzer crystal – high efficiency

Experiments performed at LCLS CXI instrument and SACLA nanofocus instrument

#### **Observation of Strong Lasing at 5.9 keV K** $\alpha_1$ **XES**



Single shot

#### Stimulated X-Ray Emission Spectroscopy in MnCl<sub>2</sub> Solution



#### Stimulated X-Ray Emission Spectroscopy in MnCl<sub>2</sub> Solution

SLAC



Kroll et al, *Phys. Rev. Lett.*, **120**, 133203 (2018) 11

### Stimulated Kα Emission in MnCl<sub>2</sub> Solution



12

#### Mn(II)Cl<sub>2</sub> vs NaMn(VII)O<sub>4</sub>

SLAC



Kroll et al, *Phys. Rev. Lett.*, **120**, 133203 (2018) <sub>13</sub>

## **X-Ray Emission Spectroscopy**



For reviews see e.g.: Glatzel & UB, *Coord. Chem. Rev.*, **249**, 65-95, (2005) Pollock & DeBeer, *Accounts of Chemical Research* (2015)

## **SASE Pulse Fluctuations**



XFEL experiments need to be designed to address these fluctuations

- Per pulse readout of detectors and diagnostics
- Appropriate X-ray optics and spectroscopy methods

#### Design and characteristics of an X-ray Laser Oscillator

 A. Halavanau,<sup>1</sup> A. Benediktovitch,<sup>2</sup> A.A. Lutman,<sup>1</sup> D. DePonte,<sup>1</sup> D. Cocco,<sup>3</sup> N. Rohringer,<sup>4,5</sup> U. Bergmann,<sup>1</sup> and C. Pellegrini<sup>1</sup>
<sup>1</sup>SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
<sup>2</sup>Center for Free Electron Laser Science, DESY, Hamburg 22761, Germany <sup>3</sup>Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
<sup>4</sup>Center for Free Electron Laser Science, DESY, Hamburg, 22607, Germany <sup>5</sup>Department of Physics, Universität Hamburg, Hamburg 22761, Germany

Manuscript submitted ArXiv link: <u>https://arxiv.org/abs/1912.03554</u>

## **An X-ray Laser Oscillator**



ArXiv link: <u>https://arxiv.org/abs/1912.03554</u>

## **An X-ray Laser Oscillator**





#### ArXiv link: https://arxiv.org/abs/1912.03554

#### High peak power, stability

#### Need to know as much as possible about incoming pulse

- Monochromatic seed beam ideally with self-seeding
- Shot-by-shot upstream spectrometers for seed pulse (and eventually for pump pulse)
- Intensity monitor to know photon # after KB mirror (non-destructive)
- Shot-by-shot beam profile, wave front sensor for focus, temporal diagnostics
- Angular streaking to measure both spectral and temporal pulse ('cookie box' for soft x-rays)
- 'Fast' switching from seeding to non-seeding (minutes instead of hours)

# **Collaborators**

#### SLAC

Roberto Alonso-Mori Franklin Fuller Marc Guetg (now Eu-XFEL) Aliaksei Halavanau Thomas Kroll Alberto Lutman Agostino Marinelli Claudio Pellegrini Bob Schoenlein Dimosthenis Sokaras Clemens Weninger Yu Zhang

#### **CXI Instrument at LCLS**

Andy Aquila Sébastien Boutet Dan DePonte Jason Koglin Jake Koralek Mengning Liang

#### SACLA

Ichiro Inoue Yuichi Inubushi Tetsuo Katayama Taito Osaka Kensuke Tono Makina Yabashi

U Wahsington Munira Khalil

#### **PNNL**

Niranjan Govind

#### Lawrence Berkeley Lab

Jan Kern Vittal Yachandra Junko Yano

#### **Max-Planck Hamburg**

SLAC

Andrei Benediktovitch Laurent Mercadier Nina Rohringer

#### Tokyo

Yurina Michine Hitoki Yoneda

#### **Rice University**

Pulickel M. Ajayan Babu Ganguli Devashish Salpekar Farheen N. Sayed

Thanks to SLAC and SACLA staff, DOE for funding