Ultrafast X-ray Spectroscopies at the European XFEL

Frederico Alves Lima European XFEL – FXE

Workshop on Chemical Dynamics and Energy, 11.12.2019

The European XFEL

The European XFEL

European XFEL

EuXFEL: radiation time structure

Electron bunch trains (with up to 2700 bunches, 0.1–1 nC)

Up to 27 000 pulses/s

European XFEL

5

Scientific cases

Manipulating and mapping out the potential energy surface (PES) landscape in Fe(II)-based complexes

Dynamics of light conversion in iron based photosensitizers

Electron transfer and doming in ferric heme proteins

Solvato-

Ligand substitution

MLCT

MLC⁻

Tools and observables: time-resolved X-ray spectroscopy

Spin crossover dynamics of [Fe(bpy)₃]²⁺

European XFEL

Kowalska, J. K., Lima, F. A., *et al.*, Isr. J. Chem., **56**, 9-10 (2016) 803 W. Zhang *et al.*, Nature, **509** (2014) 345 H. Lemke *et al.*, Nature Comm., **8**, (2017) 15342

FXE Instrument Overview

7

FXE: Sample interaction area

Milestones: 300 pulses in a train at 1 MHz & >2mJ/pulse

Milestones: high photon energies

Nb K-edge ~19 keV

Unique opportunities at high X-ray energies!

LaB₆ diffraction collected with LPD @ 14 keV

Beam size at sample: ~10 µm

European XFEL

Long-lived charge-separated excited states in Fe^{II} complexes

Using solvent and DFT-optimized ligand substitution the PES landscape (in particular conical intersections) can be controlled and intramolecular relaxation rates can thus be modified.

Perspective: Fe(II)-based photosensitizers in photovoltaics or molecular photocatalysis (*i.e.* H₂O splitting)

Femtosecond XES on [Fe(tpy)(CN)₃]⁻ solutions

Substituting weak ligand field (LF) polypyridyl ligands, e.g. bipyridines or terpyridines, with electron-donating ligands, i.e. cyano groups, modifies the relative energies of MLCT and MC states and consequently extends the lifetime of the CT states (charge-separated states)

Simultaneous detection of both iron K α and K β emission

Excellent temporal resolution

High quality XES \rightarrow lineshape analysis

European XFEL

We are on our way!

Integrated Klpha scan trace, IAD range from 6.3999 keV to 6.4099 keV

Femtosecond XES on [Fe(tpy)(CN)₃]⁻ solutions

XES kinetics agrees with intermediate spin state lifetime via (TD-)DFT and femtosecond optical spectroscopy.

W. Zhang *et al.*, Nature, **509** (2014) 345G. Vankó, et al; J. Phys. Chem. C, (2015)

Dynamics of light conversion in iron based photosensitizers

Iron-based photosensitizers present a drawback compared to Ru or Ir analogous due to short-lived MLCT states, which rapidly relax into long-lived MC states affecting efficient catalysis.

<u>Perspective</u>: Circumvent diffusion-controlled, hence inefficient charge transfer during charge injection in semiconductors or direct electron transfer in bimetallic dyads for photocatalytic proton reduction.

15

12+

Dynamics of light conversion in iron based photosensitizers

Does a long(er) MLCT lifetime implies on a more efficient charge transfer?

- Simultaneous detection of both iron Ka and iron Ka emission
- No uncertainty about t₀

Co K-alpha

Fe Ka

 $Co K\alpha$

Cobalt catalyst

Charge transfer

Iron photosensitizer

Electron transfer

Electron transfer and doming in ferric heme proteins

Heme structure ruffling \Leftrightarrow ability to tune the redox potential \Leftrightarrow relevant electron transfer properties in humans.

<u>Perspective</u>: Better understanding of the structure deformations (ruffling *vs.* doming) in the high-spin state and its connections with the protein electron transfer properties.

XAS pump-probe intensity

XES Kα, FWHM

1†a)

0.5

0

3.6

3.4

3.2

3

-5

0

5

-b)

Electron transfer and doming in ferric heme proteins

What are the structure and electronics of the exited-state(s)?

15

 \diamond

20

- Does a ligand detachment occur upon photoexcitation?
- Combined XAS (SwissFEL) and XES (Eu-XFEL)

Domed

S=5/2

10 ps

Porphyrin

S=1/2

10

Time Delay / ps

Thank You for Your Attention

Ultrafast X-ray Spectroscopies at the European XFEL

Frederico Alves Lima, 11.12.2019

EXTRAS

Ultrafast X-ray Spectroscopies at the European XFEL

Sample chamber for liquid experiments

