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Introduction 
The equations of state (EOS) are the fundamental relation 
between the macroscopically quantities describing a physical 
system in equilibrium1).  The EOS relates all thermodynamic 
quantities, such as density, pressure, energy, entropy, etc.  
Knowledge of the EOS is required in order to solve 
hydrodynamic equations in specific physical situations, such as 
plasma physics associated with laser interaction with matter, 
shock wave physics, astrophysical objects etc.  The properties 
of matter are summarised in the EOS.  

The concept of Landau quantization in the presence of strong 
magnetic fields is presented in the rest of this section and, in the 
next section, the electron EOS in the presence of strong 
magnetic fields is calculated and presented for non-relativistic 
plasmas for both zero and finite temperatures.  Finally, the 
regime of applicability to laser-plasma interactions is discussed.  
The short space in this report prevents any detailed description 
of these concepts – the interested reader is directed to our recent 
paper where Landau quantisation is discussed in depth1)

. 

These EOS were previously scattered throughout the 
astrophysical literature and were caste in terms of densities of 
106gcm-3 and magnetic fields >1012G, which are, of course, 
appropriate for those expected in neutron star atmospheres.  The 
role of this report is to reformulate the EOS in terms of those 
that can potentially be realised in laboratory plasmas.  By doing 
so, we have two aims in mind: first, to alert the experimental 
laser-plasma physics community to the potential of realising 
Landau quantisation in the laboratory for the first time since the 
theory was first formulated; second, to indicate that there are 
significant differences in the EOS when these strong magnetic 
fields are present, as discussed in some detail our recent paper 
for the interested reader. 

 If one neglects the electron-phonon interactions then the 
thermodynamic functions can be expressed as a superposition of 
the electrons and the atoms (or ions) of the medium under 
consideration.  For example, one can write the energy E and the 
pressure P in the following form 
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where Ee and Pe are the electron energy and pressure 
accordingly while Ei and Pi are the contributions of the atom (or 
ion in a plasma medium) vibrations to the energy and pressure.  
For example, the Debye EOS for ions is given by2) 
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where Γ is phenomenological coefficient and TD is the Debye 
temperature.  A very useful phenomenological EOS for a solid 
is given by the Gruneisen EOS2), 
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where the quantities on the right hand side of the second 
equation can be measured experimentally: α = linear expansion 
coefficient, κ = isothermal compressibility, cV = specific heat at 
constant volume.  There are more sophisticated EOS for 
ions3),4), however in this report we do not consider further the 
ion contributions.  Since the magnetic field affects mainly the 
electrons, the electronic contribution is discussed in this report. 

Magnetic fields of a few GG appear to be within reach of the 
existing petawatt lasers5).  In this report, the EOS are calculated 
in the presence of these magnetic fields.  Since only the 
electrons are influenced by the magnetic field under 
consideration, only the electronic equation of state is 
reconsidered and analysed.  For the ion part of the EOS one can 
take the Gruneisen EOS or any other appropriate model. 

 

Landau Levels 
The motion of a charged particle in a magnetic field is 
quantized6).  In particular, the motion of an electron (mass m 
and charge –e,) perpendicular to a constant magnetic field (B) is 
quantized (the vectors are denoted by bold letters).  The kinetic 
energy of the transverse motion is quantized into Landau levels 
with a quantum number nL.  The Landau energy levels are 
defined by7-9) 
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 ħ = h/2π, h is the Planck constant,  r and v are the electron 
position in space and velocity accordingly, Π is the mechanical 
momentum, p is the canonical momentum and A is the vector 
potential.  The classical equation of motion for an electron at a 
position r and its solution in the perpendicular direction are 
given by 
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Rc is the position vector of the guiding centre of the electron 
gyromotion, while the Landau quantization (4) has been used in 
deriving the quantized radius of gyration rB. 

The energy of the electron (E) is given by 
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The spin energy εs of the electron is included in the energy 
equation 
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For the ground level (n’L = 0) s = -1 the degeneracy is 1, for 
exited levels s = -1 or =1 and therefore the degeneracy is 2.  For 
extremely large magnetic fields 
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the transverse motion of the electron becomes relativistic, and 
in this case the following energy of the electron is obtained 
from the Dirac equation (10) 
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The relativistic motion of the electrons [Equation (10)] is 
strongly influenced by the extremely high magnetic fields (Brel).  
For the laser plasma interactions we shall define the high 
magnetic fields by 
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where a0 is the Bohr radius.  For B much larger than B0, the 
electron cyclotron energy ħωB is larger than the typical 
Coulomb energy, and therefore the usual perturbation in laser 
plasma interaction of the magnetic field effects relative to the 
Coulomb interactions is not permitted anymore.  In this case the 
Coulomb forces act as a perturbation to the magnetic forces.  
The dominant length dimension for the very high magnetic 
fields is the first Landau radius rB (nL = 0) rather than the Bohr 
radius.  It is interesting to point out that Brel is related to B0 by 
the fine structure constant α,  
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EOS in Strong Magnetic Fields, the Non-Relativistic Case 
In this section we consider the non-relativistic EOS of a free 
electron gas in strong magnetic field at finite temperature7-9).  
As is described in introduction, the electron motion 
perpendicular to the magnetic field is determined by the 
magnetic field and the electron energy levels are quantized into 
Landau states.  The energy spectrum of one electron is given by  
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pz is the electron momentum along the magnetic field and is 
continuous.  

A most important difference between zero and non-zero (or 
rather small or large) magnetic field is “the counting of the 
number of states”.  In particular, 
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This degeneracy has to be multiplied by the quantum 
degeneracy gnL =1 for nL = 0 and gnL = 2 for nL = 1,2,3….  In 
calculating the number of states, with a magnetic field in the z 
direction, the Landau quantization of Equation (14) has been 
used.  

The starting point in calculating the EOS without or with 
magnetic field is the grand partition function for Fermi-Dirac 
particles (in this case, an electron gas).  However, in the case of 
a large B  one has to use the electron energy given in (13), and 
when changing the sums with integrals,  starting with the grand 
partition function, we obtain in this case the following equations 
of state (the details of which can be found in reference 1)):  
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Fk is the Fermi-Dirac integral of the order k.  From the first of 
the Equations in (15), µ is calculated as a function of n, and this 
value is used in the other equations to calculate the other 
thermodynamic quantities (P, E, S) as a function of n (or 
density) and T for a given magnetic field B. 

It is interesting to point out that the Fermi-Dirac integrals for 
the electron density n and the electron pressure P are different 
(one order less) than in the B = 0 case.  This is a result of the 
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difference in the number of states for small or large B.  If the 
magnetic field is very large then only the ground state is 
occupied, and in this case only the first term contributes to the 
infinite sum in (14) (nL = 0, gnL = 1).  

 

For small temperatures, i.e.  strong electron degeneracy, defined 
by 

( )0T     ;  nTk FBLFB =µ≡εω−ε<< h   (16) 

one can use the expansion of the Fermi-Dirac integrals in order 
to write explicitly the temperature contribution to the EOS.  The 
EOS, given in the general case by (15), can be expressed in the 
lowest order in temperature by the following equations; 
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We suggest the use of Equation (17) as the EOS input in laser 
plasma electron transport codes for the phase space domain 
where Landau quantization is relevant.  It is important to realize 
that for laser-solid target interactions the changes in the EOS 
induced by Landau quantization can be significant.  For strong 
Landau quantization, i.e.  nL = 0, the Fermi energy εF, the 
pressure P (denoted here by PB) and the speed of sound cB scale 
with respect to the electron density n and the magnetic field B 
in the following way, 
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These scaling laws are significantly different from those derived 
from Fermi Dirac EOS at B=0.  We find that 
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It is important to emphasize that these relations are only valid 
for n23 < 1.3 B9

1.5 and for T < TB ~ 11.58 B9 . 

 

The most interesting and important question is the identification 
of the plasma domain (density and temperature) with the high 
magnetic field created in laser-plasma interactions.  
Conservation of energy requires that the magnetic field be 
highly localized and will be generated in the density regime 
between critical and solid (or higher in the case of shock 
compressed plasmas).   

The crucial factor appears to be the temperature profile at this 
point.  The study of the background electron temperature under 
these conditions is a topic of active study.  Modeling of these 
conditions relies upon the accurate calculation of the electric 
and magnetic fields associated with the fast electron 
propagation inside the solid target and the return current that is 
required to compensate for the multi-TAcm-2 beam.  The most 
modern tools rely upon relativistic Vlasov-Fokker-Planck 
modeling of the fast electron transport and return current, 
principally because of the long mean-free paths of the fast 
particles involved.  They require rigorous testing against 
experiment and this is an ongoing investigation. 

In summary, magnetic fields of 0.7GG have already been 
observed with a 100TW glass laser system, and there are 
realistic possibilities that multi-GG B-fields can be generated 
with existing PW-class laser systems.  The B-fields were 
measured with oblique incidence p-polarized laser irradiation.  
Particle-in-cell modeling suggests that the azimuthal B-field lies 
outside the main interaction region in the colder regions of the 
target.  It appears that for a few cycle petawatt laser pulses with 
ten-femtosecond pulse duration, a domain might be obtained 
where the Landau quantization plays an important role in the 
EOS data and also be a dominant factor in determining the 
transport coefficients.   

 The role of this review paper has been to alert the experimental 
laser-plasma physics community to these exciting but 
challenging requirements for significant changes in the EOS.  If 
they can be realized in the laboratory, they will mark a 
significant breakthrough for high energy density plasma 
science. 
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