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Abstract

The electrons in a dense plasma follow Fermi-Dirac
statistics, which deviate significantly in this regime from
the usual Maxwell-Boltzmann approach used by many
models. We have compared the atomic rate coefficients
in the two cases and the resulting populations. The dis-
crepancy is small for solid density plasmas close to local
thermodynamic equilibrium, but becomes significant if
the plasma is irradiated by photoionizing radiation of
irradiance greater than approximately 1014 W cm=2.

1 Introduction

Collisional-radiative models are frequently used to cal-
culate plasma opacities, equations of state and generate
emission spectra. Such models assume that the electrons
in a plasma are distributed with one or more Maxwellian
components, meaning that the rates of atomic processes
can be calculated efliciently.

The Fermi-Dirac kinetic energy distribution for an
electron temperature T, and density n. is given by
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where p(ne,T.) is the chemical potential and G =
4m(2me/h?)3/2, where the constants have their usual
meanings. The chemical potential is calculated at each
temperature and density from the zeroth moment of the
distribution, fooo frp(e,T.)de = 1. The chemical po-
tential decreases monotonically with temperature and
tends to an asymptote for which the energy distribu-
tion becomes Maxwellian. In practice, this means that
the Fermi-Dirac distribution differs significantly from the
Maxwell-Boltzmann at low temperatures (< 20 eV) and
high densities (> 10?2 cm™3). Such densities are higher
than the critical density of visible lasers, but may be di-
rectly created via ultraviolet or soft x-ray lasers. Low
temperature, high density plasmas are also universally
present in ultraviolet to infrared laser plasmas between
the critical density and the ablation surface.

A degenerate plasma introduces the need to take ac-
count of empty energy states when calculating the rates
of processes. We model this by the inclusion of Pauli
blocking factors, which correspond to the probability

that a quantum state with energy e is available for an
emerging electron to occupy, given by

F(e,T.) =1~ {1 +exp(e — p)/Te]} (2)

2 Calculation of the rate coefficients

Calculations of rate coefficients follow the usual ap-
proach of integals over the product of the cross sec-
tion and energy distributions; fooo \/2¢/mo fde for colli-
sional excitation, for example. For a degenerate plasma,
we replace the usual Maxwell-Boltzmann distribution
fue(e,T.) = (2/v/7)/eexp(—e/T.) with that of Equa-
tion (1) for each incoming electron and add a Pauli block-
ing factor from Equation (2) for each outgoing electron.
This introduces a problem, because integrals of these
functions can no longer be carried out analytically; nu-
merical integration is significantly more computationally
intensive.

The inclusion of the Pauli blocking factors into the
collisional ionization coefficients necessitates the use of
the differential cross section, which complicates their cal-
culation. In this process, the remainder of an incoming
electron’s kinetic energy is shared between two outgoing
electrons, both with a corresponding blocking factor; the
differential cross section in effect governs how this energy
is shared. We have for the collisional ionization coeffi-
cient,
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where F; is the ionization energy and N; the ion density.
Blocking factors do not appear in classical theory, so the
differential cross section may be integrated to directly
obtain the total cross section. Therefore, the differential
cross section has been poorly studied experimentally. We
have extended Mott’s differential cross section[1] to be
compatible with recently published collisional ionization
cross sections.

The inverse rates of collisional processes may be
calculated by wusing appropriate micro-reversibility
relations[2]. We have used the standard approach of



grouping the processes into rate matrix, which may be
inverted to obtain the steady state or used to solve for
the time-dependent ion populations.

3 Steady state ionization

We have used our collisional-radiative model to calculate
the steady state ion populations and hence the ionization
fraction of carbon for a given total ion density and vary-
ing temperature. We have also varied the intensity of
incident monochromatic radiation with photon energies
of 50 eV; the results are shown in Figure 3. The pho-
toionization cross section generally decreases with pho-
ton energy above threshold and hence the rate of pho-
toionization is high for carbon at the selected photon
energy.
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Figure 1: Comparison of the steady state ionization
fraction of a carbon plasma (density of 2.23 g cm™3,
corresponding to graphite) for Fermi-Dirac (solid) and
Maxwell-Boltzmann (dashed) statistics, irradiated by 50

eV photons at intensities indicated.

We see that the impact of the Fermi-Dirac rates is
negligible without the incident radiation (where it is ap-
proximately in local thermodynamic equilibrium), be-
cause the ionization fraction is roughly linear with tem-
perature and so the electron density is never sufficient
for the plasma to be degenerate. However, strong pho-
toionization creates a degenerate high electron density,
leading to divergence in the two cases.

4 Time evolution

We have calculated the temperature and ionization of
carbon, which is taken initially to be fully neutral, with
a short incident Gaussian laser pulse of 14 eV photons
(just above the first ionization energy of carbon) shown
in Figure 4. The temperature was calculated from the
absorbed laser energy by inverting the expression for the
average energy of an electron, ¢ = fooo efrp(e, Te)de.
The temperature and ionization fraction diverge in the
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Figure 2: Evolution of the electron temperature and
ionization fraction of carbon (density of 3.53 g cm™3,
corresponding to diamond) irradiated by a laser beam
with photon energies of 14 eV and Gaussian intensity as
shown shaded with a full-width half maximum of 1 fs and
peak intensity of 10'* W ecm—2 with Maxwell-Boltzmann
(dashed line) and Fermi-Dirac (solid line) statistics as in-
dicated.

two cases, but may begin to match if the pulse were
longer and hence the final temperature became higher.

5 Conclusion

We have presented a method for calculating the atomic
rates in a plasma described by the Fermi-Dirac distri-
bution and compared properties to those of a classical
plasma. We have confirmed that the classical approach
for calculating rates is sufficient for most plasmas of in-
terest, but demonstrate that the additional computa-
tional effort required to calculate degenerate rate co-
efficients may be required to simulate a dense plasma
created by lasers from the ultraviolet to the soft x-ray.
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