ELI: UK User perspective

High-power interactions, high-field science and secondary sources

ELI Consultation of UK User community, London, 10 June 2018

Marco Borghesi

Centre for Plasma Physics

ELI: different user categories

Experimental users

Directly using the laser sources (Interaction physics, plasma physics, secondary source development ...) Involved in design/commissioning/ first light experiments/collaborations ELI Beamlines: QUB, Strathclyde ELI NP: York, QUB, Strathclyde, IC ELI ALPS: Strathclyde, IC

Users/PI through competitive access

 Beamline users : Employing secondary sources for multidisciplinary experiments/testing Current users of accelerators/ light sources Academic/clinical/ industrial users

UK High-power laser users: Current scenario

Strength in :

- Particle acceleration (ions, electrons, positrons, neutrons)
- X-ray generation (betatron, HHG)
- Laboratory astrophysics
- High-field science
- High Energy Density Physics/Warm Dense Matter
- Applications of laser-driven radiation (e.g. biology, medical imaging, material properties).

HPL provision:

STFC Central Laser Facility: VULCAN (PW, 500 J, 500 fs) GEMINI (2 x 400 TW, 15 J, 40 fs)

Local systems : SCAPA (Strathclyde): 350 TW, 25 fs, beamlines... TARANIS, CERBERUS (50-100 TW, sub-ps)

International access :

EU (LASERLAB): LULI2000, PHELIX, PALS, etc... Other access programs : NIF, LLE,.. Collaborative access : JKaren (J), Hercules, ATF (US)

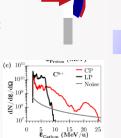
ELI - high power laser provision

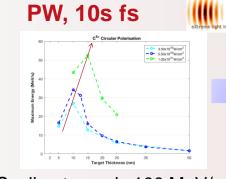
L3 HAPLS: 1 PW, 30 fs, 10 Hz

L4 : 10 PW, 130 fs, 2 kJ (PW output, ns uncompressed output)

HPLS: 2 x 10 PW, 20 fs, 1 shot per minute Other outputs: 100 TW, 10 Hz 1 PW, 1 HZ

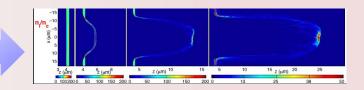
HF PW: 10 Hz, 2 PW, 17 fs

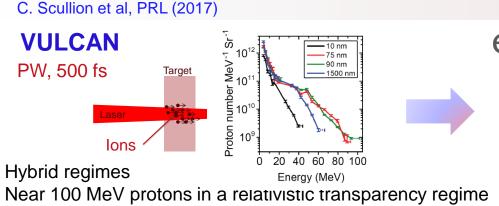

Particle acceleration : ions



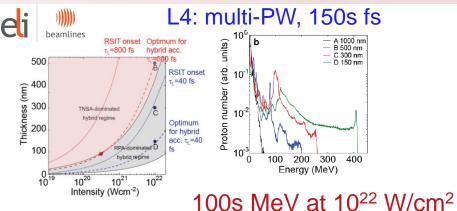
GEMINI 400 TW, 40 fs

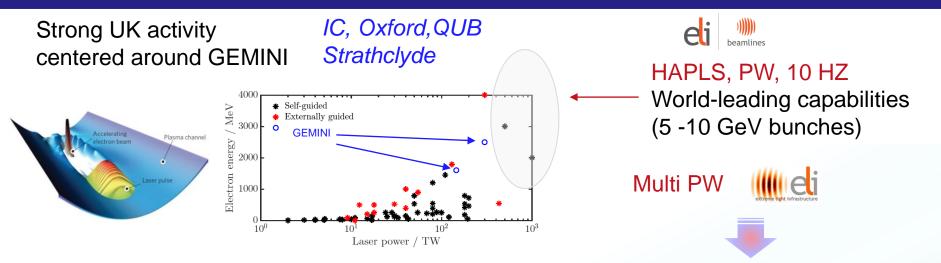
 $I \sim 5 \ 10^{20} \ \text{W/cm}^2$


Emergence of Radiation Pressure Acceleration (up to 30 MeV/n C)



Scaling towards 100 MeV/n

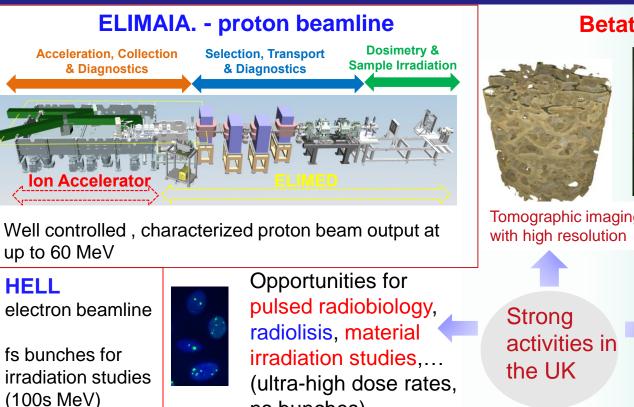

10 PW, 10s fs, I > 10²² W/cm²


100s MeV to GeV/n acceleration

A. Higginson et al, Nature Comm (2018)

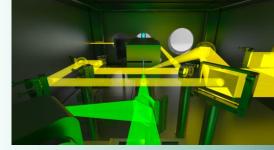
Particle acceleration: electrons

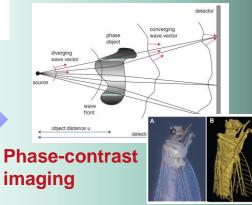
Multi-GeV acceleration in gas cell with f/40 focusing (IC + collaborators)


Strong expertise/leadership in guiding/injection/staging techniques

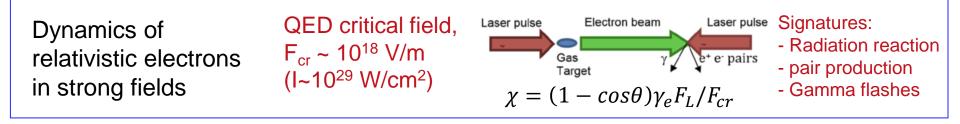
10- 100 GeV, with very long focusing, low density extended plasmas

Generation of fs, KA multi- GeV **positron beams** (e.g. e⁻ - e⁺ colliders, high energy astrophysics..)

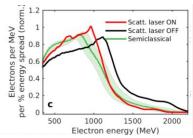

Beamline approach for applications



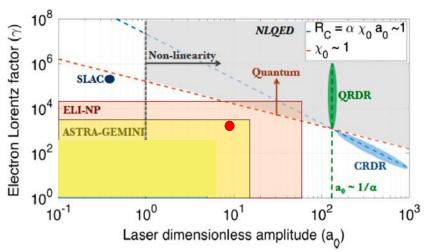
ns bunches)


Betatron/Compton beamline

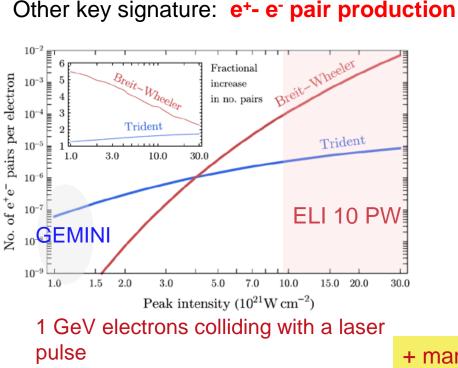
Tomographic imaging

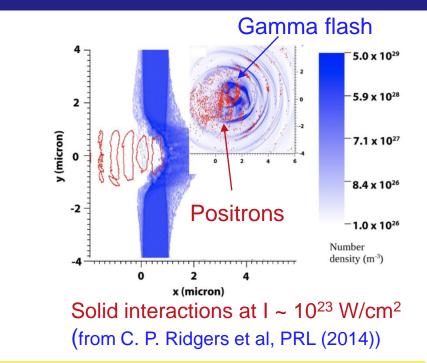


High-field science – QED studies



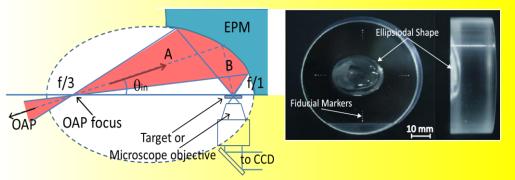
Recent GEMINI results (IC, York, Strathclyde, QUB) have shown radiation reaction effects at χ ~0.25


J.Cole *et al*, PRX (2018) K Poder *et al*, PRX (2018)


Extension to $\chi > 1$ on ELI-NP (2 x 10 PW) ELI Beamlines (HELL+L4) (10 GeV electron vs multi-PW laser pulse)

High-field science – QED studies

(from T. Blackburn et al, PRL (2012))

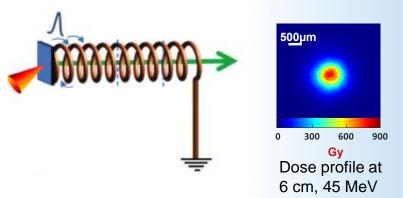


+ many other opportunities (photon-photon colliders, vacuum birefringence, etc.)

Opportunities for UK-developed technology

Focusing plasma mirrors to increase intensities

Increasing laser intensity by de-magnifying the focal spot by a factor of 3 to 5


Technique developed on VULCAN PW

R. Wilson et al, PoP (2016)

Ongoing collaboration between Strathclyde, CLF and ELI Beamlines in relation to 10 PW L4 focusing.

Target design for proton beam collimation

QUB/ELI Beamlines collaboration on compact beamline design

S. Kar et al, Nature Comm (2016)

ELI – opportunities for UK users conclusions

- Capitalizing on current UK strength and leadership by:
- Advancing current CLF-based research to new regimes
- Test fundamental theory emerging at higher intensities/power
- Developing applicative opportunities via PW-driven beamlines
- Developing/exploiting technological advances

These are **essential** steps for the long term health and stability of the UK's HPL user community

Examples:

Particle acceleration X-ray sources Beamline applications High-field science Technology

...but also

High harmonics Neutron, positrons, muons WDM/lab astro/ HEDP